ADVFN Logo ADVFN

We could not find any results for:
Make sure your spelling is correct or try broadening your search.

Trending Now

Toplists

It looks like you aren't logged in.
Click the button below to log in and view your recent history.

Hot Features

Registration Strip Icon for charts Register for streaming realtime charts, analysis tools, and prices.

PMET Patriot Battery Metals Inc

2.47
-0.15 (-5.73%)
22 Nov 2024 - Closed
Delayed by 15 minutes
Share Name Share Symbol Market Type
Patriot Battery Metals Inc TSX:PMET Toronto Common Stock
  Price Change % Change Share Price Bid Price Offer Price High Price Low Price Open Price Shares Traded Last Trade
  -0.15 -5.73% 2.47 2.45 2.52 2.55 2.40 2.52 591,673 21:12:05

Significant Mineral Resource Upgrade at Shaakichiuwaanaan Lithium Project to Underpin Impending PEA

06/08/2024 1:06am

PR Newswire (US)


Patriot Battery Metals (TSX:PMET)
Historical Stock Chart


From May 2024 to Nov 2024

Click Here for more Patriot Battery Metals Charts.

VANCOUVER, BC, Aug. 5, 2024 /PRNewswire/ - August 6, 2024Sydney, Australia

HIGHLIGHTS

  • The Mineral Resource Estimate for the Shaakichiuwaanaan Lithium Project (formerly known as Corvette) reaffirmed as the largest lithium pegmatite Mineral Resource in the Americas and the 8th largest globally:
    • Consolidated Mineral Resource statement (CV5 & CV13 spodumene pegmatites)
      • 80.1 Mt at 1.44% Li2O and 163 ppm Ta2O5 Indicated, and
      • 62.5 Mt at 1.31% Li2O and 147 ppm Ta2O5, Inferred.  
  • The Company remains on track to provide the market with a Preliminary Economic Assessment for the CV5 Spodumene Pegmatite by the end of the September quarter based on the Mineral Resource Estimate announced herein.
  • Shaakichiuwaanaan Mineral Resource includes 6.9 km of collective strike length now confirmed to host continuous spodumene pegmatite Mineral Resources (4.6 km at CV5 and 2.3 km at CV13).
  • Significant growth potential – both the CV5 and CV13 spodumene pegmatites remain open along strike at both ends, and to depth.
  • Cut-off grade sensitivity analysis defines significant tonnage at very high grade, primarily reflecting the Nova and Vega zone discoveries at CV5 and CV13, respectively.
  • Mineral Resource Estimate includes only the CV5 and CV13 spodumene pegmatites. It does not include any of the other known spodumene pegmatite clusters on the Property – CV4, CV8, CV9, CV10, CV12, and CV14.
  • The Company intends to aggressively advance the remaining infill drilling at CV5 to underpin a maiden ore reserve and Feasibility Study scheduled for Q3-2025.  

Darren L. Smith, Vice President of Exploration, comments: "This is a significant update to our Mineral Resource Estimate at Shaakichiuwaanaan, which now includes both the CV5 and CV13 spodumene pegmatites as well as a significant amount of resources now classified as Indicated. This resource update objectively reaffirms the Tier 1 nature of the spodumene pegmatites that define the Shaakichiuwaanaan Project. Further, with both the CV5 and CV13 pegmatites remaining open, as well as multiple spodumene pegmatite clusters on the Property still to be drill tested, significant potential for further resource growth is evident."

"Exploration success in this industry is never less than a team effort. In this regard, I would like to acknowledge the dedication, work ethic, and contributions from the exploration and development teams, our supporting service providers and consultants, and finally our Chisasibi community workers who have all helped advance Shaakichiuwaanaan through to this key milestone on the path to potential production," added Mr. Smith.  

Ken Brinsden, President, CEO, and Managing Director, comments: "This is a significant accomplishment for our team and a major milestone for the Company as we cement the Shaakichiuwaanaan Lithium Project's position as one of the most important new hard rock lithium assets globally."

"The delivery of a substantial maiden Indicated Resource of over 80 million tonnes is a major milestone which will underpin development studies, while the continued growth of the overall resource – in conjunction with the Exploration Target announced separately today – highlights the Tier-1 scale of the mineral system and the enormous potential for further growth. I am immensely proud of our team members and consultants who continue to put a significant focus on safety and quality deliverables as we move forward through the various phases of development".

"As we advance towards a Preliminary Economic Assessment in the near-term for the Shaakichiuwaanaan Project, and further towards a Feasibility Study scheduled for completion Q3 2025, the Company is firmly positioned as a leading candidate to provide long-term spodumene supply to the North American and European markets," added Mr. Brinsden.  

Patriot Battery Metals Inc. (the "Company" or "Patriot") (TSX: PMET) (ASX: PMT) (OTCQX: PMETF) (FSE: R9GA) is pleased to announce an updated consolidated Mineral Resource Estimate ("MRE" or "Consolidated MRE") for the CV5 and CV13 spodumene pegmatites at its 100%-owned Shaakichiuwaanaan Property (the "Property" or "Project") – formerly known as Corvette – located in the Eeyou Istchee James Bay region of Quebec. The CV5 Spodumene Pegmatite is situated approximately 13.5 km south of the regional and all–weather Trans-Taiga Road and powerline infrastructure corridor, and is accessible year-round by all-season road. The CV13 Spodumene Pegmatite is located approximately 3 km west-southwest of CV5.

The updated Consolidated MRE for the Shaakichiuwaanaan Project includes both the CV5 and CV13 spodumene pegmatites for a total of 80.1 Mt at 1.44% Li2O Indicated and 62.5 Mt at 1.31% Li2O Inferred, for 4.88 Mt contained lithium carbonate equivalent ("LCE") (Table 1, Figure 1, and Figure 2). Presented by resource location/name, this MRE includes 78.6 Mt at 1.43% Li2O Indicated and 43.3 Mt at 1.25% Li2O Inferred at CV5, and 1.5 Mt at 1.62% Li2O Indicated and 19.1 Mt at 1.46% Li2O Inferred at CV13. The cut-off grade is variable depending on the mining method and pegmatite (see footnotes in Table 1 for details). Mineral Resources are not Mineral Reserves as they do not have demonstrated economic viability

The Consolidated MRE for the Shaakichiuwaanaan Project, including that of the CV5 Pegmatite on its own, reaffirms it – by a wide margin – as the largest lithium pegmatite Mineral Resource in the Americas and 8th largest globally (Figure 1, Figure 2, Appendix 2, and Appendix 3). These metrics and context firmly reaffirm and entrench the Project as a Tier 1, world class lithium pegmatite asset.

A primary objective of the drilling completed subsequent to the July 2023 MRE, was to target a significant upgrade from Inferred resources to Indicated resources, which correlates to a more robust Mineral Resource with higher confidence classification. As a result, in addition to the overall size of the MRE increasing compared to the maiden MRE (see news release dated July 30, 2023), a significant amount of the resource has now been classified as Indicated (80.1 Mt at 1.44% Li2O) compared to no Indicated resources being classified in the maiden MRE.

The Consolidated MRE statement for the Shaakichiuwaanaan Project, presented in Table 1, includes only the CV5 and CV13 spodumene pegmatites, which remain open at both ends along strike and to depth along most of their length. Therefore, this Consolidated MRE does not include any of the other known spodumene pegmatite clusters on the Property – CV4, CV8, CV9, CV10, CV12, and CV14 (Figure 3 and Figure 33). Collectively, this highlights a considerable potential for resource growth through continued drill exploration at the Property.

The Mineral Resource statement and relevant disclosure, sensitivity analysis, peer comparison, geological and block model views, and cross-sections are presented in the following figures and tables. A detailed overview of the MRE and Project is presented in the following sections in accordance with ASX Listing Rule 5.8.

MINERAL RESOURCE STATEMENT (NI 43-101)

Table 1: NI 43-101 Mineral Resource Statement for the Shaakichiuwaanaan Project.

Pegmatite

Classification 

Tonnes

Li2
(%) 

Ta2O
(ppm) 

Contained Li2
(Mt)

Contained LCE 
(Mt)

CV5 & CV13 

Indicated

80,130,000

1.44

163

1.15

2.85

Inferred

62,470,000

1.31

147

0.82

2.03

Mineral Resources were prepared in accordance with National Instrument 43-101 – Standards for Disclosure of Mineral Projects ("NI 43-101") and the CIM Definition Standards (2014). Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. This estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, economic, or other relevant issues.

The independent Competent Person (CP), as defined under JORC, and Qualified Person (QP), as defined by NI 43–101 for this estimate is Todd McCracken, P.Geo., Director – Mining & Geology – Central Canada, BBA Engineering Ltd. The Effective Date of the estimate is June 27, 2024 (through drill hole CV24-526).

Estimation was completed using a combination of ordinary kriging and inverse distance squared (ID2) in Leapfrog Edge software with dynamic anisotropy search ellipse on specific domains.

Drill hole composites at 1 m in length. Block size is 10 m x 5 m x 5 m with sub-blocking.

Both underground and open-pit conceptual mining shapes were applied as constraints to demonstrate reasonable prospects for eventual economic extraction. Cut-off grades for open-pit constrained resources are 0.40% Li2O for both CV5 and CV13, and for underground constrained resources are 0.60% Li2O for CV5 and 0.80% Li2O for CV13. Open-pit and underground Mineral Resource constraints are based on a spodumene concentrate price of US$1,500/tonne (6% basis FOB Bécancour) and an exchange rate of 0.76 USD/CAD.

Rounding may result in apparent summation differences between tonnes, grade, and contained metal content.

Tonnage and grade measurements are in metric units.

Conversion factors used: Li2O = Li x 2.153; LCE (i.e., Li2CO3) = Li2O x 2.473, Ta2O5 = Ta x 1.221.

Densities for pegmatite blocks (both CV5 & CV13) were estimated using a linear regression function (SG = 0.0688x Li2O% + 2.625) derived from the specific gravity ("SG") field measurements and Li2O grade. Non-pegmatite blocks were assigned a fixed SG based on the field measurement median value of their respective lithology.

Figure 1: MRE tonnage vs grade chart highlighting Shaakichiuwaanaan as the largest lithium pegmatite Mineral Resource in the Americas. See Appendix 2 and 3 for further details. (CNW Group/Patriot Battery Metals Inc.)

Figure 2: MRE tonnage vs grade chart highlighting Shaakichiuwaanaan as the 8th largest lithium pegmatite Mineral Resource in the world. See Appendix 2 and 3 for further details. (CNW Group/Patriot Battery Metals Inc.)

The Shaakichiuwaanaan MRE covers a collective strike length of approximately 6.9 km, drill hole to drill hole (4.6 km at CV5, and 2.3 km at CV13). Further, the CV5 and CV13 spodumene pegmatites are situated along the same geological trend, separated by approximately 2.9 km, and therefore this corridor is considered highly prospective for lithium pegmatite (Figure 3). This corridor remains to be drill tested; however, current interpretation of the collective dataset over the trend indicates a reasonable potential for connectivity of the pegmatite body(s). As such, given the similar mineralogy, geochemistry, host geological and structural trend, and close proximity to each other (< 3 km), the MREs for the CV5 and CV13 pegmatites have been presented as a consolidated MRE for the Project (Table 1). The MRE is further detailed below with respect to conceptual mining constraint shapes by resource location/name (Table 2).

The Shaakichiuwaanaan database includes 537 diamond drill holes completed over the 2021, 2022, 2023, and 2024 (through the end of April – drill hole CV24-526) programs, for a collective total of 169,526 m, as well as 88 outcrop channels totalling 520 m. The MRE is supported by 344 holes (129,673 m) and 11 outcrop channels (63 m) at CV5, and 132 holes (29,059 m) and 54 outcrop channels (340 m) at CV13.

Table 2: Shaakichiuwaanaan Mineral Resource by Pegmatite and Conceptual Mining Constraint.

Cut-off 
Grade 
Li2
(%) 

Conceptual 
Mining 
Constraint 


Pegmatite 

Classification 

Tonnes 

(Mt) 

Li2O
(%)

Ta2O
(ppm) 

Contained 
Li2
(Mt) 

Contained 
LCE 
(Mt) 

0.40

Open-Pit

CV5

Indicated

78.1

1.44

162

1.12

2.78

0.60

Underground

0.5

0.91

169

0.00

0.01



Total


78.6

1.43

162

1.13

2.79

0.40

Open-Pit

CV5

Inferred

29.9

1.34

168

0.40

0.99

0.60

Underground

13.4

1.04

145

0.14

0.35



Total


43.3

1.25

161

0.54

1.34










0.40

Open-Pit

CV13

Indicated

1.5

1.62

195

0.02

0.06

0.80

Underground

0

0

0

0.00

0.00



Total


1.5

1.62

195

0.02

0.06

0.40

Open-Pit

CV13

Inferred

17.7

1.50

118

0.27

0.66

0.80

Underground

1.4

1.05

73

0.01

0.04



Total


19.1

1.46

115

0.28

0.69

All Table 1 footnotes are applicable.

Figure 3: Extent of the Shaakichiuwaanaan MRE with respect to the spodumene pegmatite clusters in the area, highlighting potential for resource growth. CV5 and CV13 remain open along strike and at depth. (CNW Group/Patriot Battery Metals Inc.)

SENSITIVITY ANALYSIS

The sensitivity analysis for the Shaakichiuwaanaan MRE (Table 3 and Figure 4) is presented as the sum of the open-pit and underground constrained and classified resources at the same cut-off. The sensitivity analysis by cut-off grade ("COG") defines significant tonnage at very high-grade, primarily reflecting the Nova Zone at CV5 and Vega Zone at CV13.

  • At a 1.5% Li2O COG for the CV5 Pegmatite, there is a total of 30.4 Mt at 2.09 Li2O Indicated and 13.6 Mt at 1.99 Li2O Inferred.
  • At a 1.5% Li2O COG for the CV13 Pegmatite, there is a total of 0.7 Mt at 2.20 Li2O Indicated and 6.6 Mt at 2.47 Li2O Inferred.

Both the Nova and Vega zones have been traced over a significant distance/area with multiple drill hole intercepts (core length) ranging from 2 to 25 m (CV5) and 2 to 10 m (CV13) at >5% Li2O, each within a significantly wider mineralized pegmatite zone of >2% Li2O (Figure 16, Figure 25, and Figure 26). These zones are located approximately 6 km apart, along the same geological trend, and emphasize not only the scale of the entire mineralized system at Shaakichiuwaanaan but also its robustness in mineralized intensity defined to date.

The following Table 3 and Figure 4 outline the corresponding tonnage and lithium grade at various cut-off grades for the Shaakichiuwaanaan MRE. In addition to evaluating sensitivities to cut-off grades, this table can help relate the tonnage and grades at Shaakichiuwaanaan more directly to those calculated for peer deposits, which may have applied different cut-off grades to their resources.

Table 3: Sensitivity Analysis for the Shaakichiuwaanaan MRE. (CNW Group/Patriot Battery Metals Inc.)

Figure 4: Shaakichiuwaanaan Mineral Resource grade-tonnage curves for the CV5 and CV13 spodumene pegmatites. (CNW Group/Patriot Battery Metals Inc.)

Figure 4: Shaakichiuwaanaan Mineral Resource grade-tonnage curves for the CV5 and CV13 spodumene pegmatites. (CNW Group/Patriot Battery Metals Inc.)

GEOLOGICAL AND BLOCK MODELS

The geological model underpinning the MRE for the CV5 Spodumene Pegmatite interprets a single, steeply dipping (northerly), continuous, principal spodumene pegmatite body ranging in true thickness from <10 m to more than 125 m, extending over a strike length of approximately 4.6 km (drill hole to drill hole), which is flanked by multiple subordinate lenses. At CV5, the pegmatite may extend from surface to depths of more than 450 m in some locations. The CV5 Spodumene Pegmatite, which includes the principal body and all subordinate lenses, remains open along strike at both ends and to depth along a significant portion of its length.

The geological model underpinning the MRE for the CV13 Spodumene Pegmatite interprets a series of flat-lying to moderately dipping (northerly), sub-parallel trending spodumene pegmatite bodies, of which three appear to dominate. The pegmatite ranges in true thickness from <5 m to more than 40 m, and extends over a strike length of approximately 2.3 km. The CV13 Spodumene Pegmatite, which includes all proximal pegmatite lenses, remains open along strike at both ends and to depth along a significant portion of its length.

The geological model of the CV5 Spodumene Pegmatite, which forms the bulk of the Shaakichiuwaanaan MRE, is presented in plan, inclined, and side view in Figure 5 to Figure 11. The MRE block model of the CV5 Spodumene Pegmatite, block classifications, and cross-sections are presented in Figure 12 to Figure 18.  

The geological model of the CV13 Spodumene Pegmatite is presented in plan and inclined view in Figure 19 and Figure 20, respectively. The MRE block model of the CV13 Spodumene Pegmatite, block classifications, and cross-sections are presented in Figure 21 to Figure 28.

Figure 5: Plan view of CV5 and CV13 spodumene pegmatite geological models – all lenses. A collective mineralized strike length of 6.9 km, drill hole to drill hole. (CNW Group/Patriot Battery Metals Inc.)

Figure 6: Oblique view (looking east-northeast) of CV5 and CV13 spodumene pegmatite geological models – all lenses (not to scale). (CNW Group/Patriot Battery Metals Inc.)

CV5 Spodumene Pegmatite
Figures 7-18

Figure 7: Plan view of CV5 Spodumene Pegmatite geological model – all lenses. (CNW Group/Patriot Battery Metals Inc.)

Figure 8: Inclined view of CV5 Spodumene Pegmatite geological model looking down dip (70°) – all lenses (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Figure 9: Side view of CV5 geological model looking north (340°) – all lenses – illustrating the scale of the CV5 Spodumene Pegmatite. (CNW Group/Patriot Battery Metals Inc.)

Figure 10: Side view of CV5 geological model looking south (160°) – all lenses. (CNW Group/Patriot Battery Metals Inc.)

Figure 11: Side view of CV5 geological model looking north (340°) – principal pegmatite only. (CNW Group/Patriot Battery Metals Inc.)

Figure 12: Oblique view of the CV5 Spodumene Pegmatite block model (classified material unconstrained) (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Figure 13: Oblique view of the CV5 Spodumene Pegmatite block model (classified material unconstrained) overlaid with geological model (semi-transparent light red) (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Geologically modelled pegmatite where blocks do not populate, have not reached the threshold confidence for the Inferred Mineral Resource category based on the classification criteria and/or mining constraint shape applied. Additional drilling is required to elevate confidence to the threshold allowing for an inferred classification of grade and tonnage to be assigned, and for these blocks to fall within a conceptual mining constraint shape required to satisfy RPEEE in accordance with NI 43-101.

Figure 14: Oblique view of the CV5 Spodumene Pegmatite block model with respect to applied open-pit and underground conceptual mining constraint shapes (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Figure 15: Oblique view of the Indicated (green) and Inferred (blue) block model classifications for the CV5 Spodumene Pegmatite (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Figure 16 (top): Select views of classified block model (CV5) highlighting the Nova Zone and continuity of high-grade mineralization along strike (blocks >2% Li2O at top and middle, blocks >3% Li2O at bottom). (CNW Group/Patriot Battery Metals Inc.)

Figure 16 (middle): Select views of classified block model (CV5) highlighting the Nova Zone and continuity of high-grade mineralization along strike (blocks >2% Li2O at top and middle, blocks >3% Li2O at bottom). (CNW Group/Patriot Battery Metals Inc.)

Figure 16 (bottom): Select views of classified block model (CV5) highlighting the Nova Zone and continuity of high-grade mineralization along strike (blocks >2% Li2O at top and middle, blocks >3% Li2O at bottom). (CNW Group/Patriot Battery Metals Inc.)

Figure 17: Cross-section of the CV5 Spodumene Pegmatite block model with conceptual mining constraint shapes. (CNW Group/Patriot Battery Metals Inc.)

Figure 18: Cross-section of the CV5 Spodumene Pegmatite block model (Nova Zone) with conceptual mining constraints shapes. (CNW Group/Patriot Battery Metals Inc.)

CV13 Spodumene Pegmatite
Figures 19-28

Figure 19: Plan view of CV13 Spodumene Pegmatite geological model – all lenses. (CNW Group/Patriot Battery Metals Inc.)

Figure 20: Inclined view of CV13 Spodumene Pegmatite geological model looking down dip (25°) – all lenses (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Figure 21: Plan view of the CV13 Spodumene Pegmatite block model (classified material unconstrained) (CNW Group/Patriot Battery Metals Inc.)

Figure 22: Plan view of the CV13 Spodumene Pegmatite block model (classified material unconstrained) overlaid with geological model (semi-transparent light red). (CNW Group/Patriot Battery Metals Inc.)

Figure 23: Oblique view of the CV13 Spodumene Pegmatite block model (classified material unconstrained) with respect to applied open-pit and underground conceptual mining constraint shapes (not to scale). (CNW Group/Patriot Battery Metals Inc.)

Figure 24: Plan view of the Indicated (green) and Inferred (blue) block model classifications for the CV13 Spodumene Pegmatite. (CNW Group/Patriot Battery Metals Inc.)

Figure 25: Plan view of the CV13 Spodumene Pegmatite block model with >2% Li2O blocks presented. (CNW Group/Patriot Battery Metals Inc.)

Figure 26: Plan view of the CV13 Spodumene Pegmatite block model, highlighting the Vega Zone, with >3% Li2O blocks presented. (CNW Group/Patriot Battery Metals Inc.)

Figure 27: Cross-section of the CV13 Spodumene Pegmatite block model (Vega Zone), with conceptual open-pit constraint shapes. (CNW Group/Patriot Battery Metals Inc.)

Figure 28: Cross-section of the CV13 Spodumene Pegmatite block model (west arm) with conceptual open-pit and underground constraint shapes. (CNW Group/Patriot Battery Metals Inc.)

TANTALUM

In addition to the lithium as the primary commodity of interest, the CV5 Pegmatite also contains a significant amount of tantalum as a potentially recoverable by-product – 80.1 Mt at 1.44% Li2O and 163 ppm Ta2O5 Indicated, and 62.5 Mt at 1.31% Li2O and 147 ppm Ta2O5 Inferred. Mineralogy completed to date indicates that tantalite is the tantalum-bearing mineral, which may potentially be recoverable from the tailings of the primary lithium recovery process (i.e., potential valorization of waste streams). Additionally, the MRE suggests tantalum grades at the CV5 Pegmatite are generally higher compared to that of the CV13 Pegmatite, although grades at CV13 remain significant (Table 2). The tantalum grades were not used in generating the potential mineable shapes at CV5 and CV13

Tantalum is currently listed as a critical and strategic mineral by the province of Quebec (Canada), Canada, European Union, Australia, Japan, India, South Korea, and the United States. Tantalum is a critical component required for a range of high-tech devices, electronics, and essential niche applications, including in capacitors as it has the highest capacitance of any metal. According to the United States Geological Survey, no tantalum is currently produced in North America or Europe, with a majority of production coming out of the Democratic Republic of Congo and Rwanda.   

NEXT STEPS

The Company will continue infill drilling at the CV5 Pegmatite this summer-fall, as well as testing for extensions along strike, up dip, and down dip, where it remains open. The primary focus of the drill program is to support a further increase in MRE confidence from the Inferred category to the Indicated category. This drilling will target Inferred blocks as categorized in the MRE announced herein, with the ultimate objective of delineating a coherent body of Indicated Mineral Resource blocks to underpin a Feasibility Study scheduled for the second half of 2025.

Additionally, the Company will continue its exploratory drill program at CV13, focused on further delineation of the high-grade Vega Zone, as well as various geotechnical, hydrogeological, and geomechanical drilling in support of advancing development studies at CV5.

ASX LISTING RULE 5.8

As the Company is listed on both the Canadian Toronto Stock Exchange (the "TSX") as well as the Australian Securities Exchange (the "ASX"), there are two applicable regulatory bodies resulting in additional disclosure requirements. This Mineral Resource estimate has been completed in accordance with the Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects, and the Company will, in accordance with NI 43-101, prepare and file a technical report supporting the Mineral Resource Estimate on SEDAR+ within 45 days of this announcement. Additionally, in accordance with ASX Listing Rule 5.8 and the JORC 2012 reporting guidelines, a summary of the material information used to estimate the Mineral Resource for the Shaakichiuwaanaan Project is detailed below. For additional information, please refer to JORC Table 1, Section 1, 2, and 3, as presented in Appendix 1 of this announcement.

MINERAL TITLE

The Shaakichiuwaanaan Property is located approximately 220 km east of Radisson, QC, and 240 km north-northeast of Nemaska, QC. The northern border of the Property's primary claim grouping is located within approximately 6 km to the south of the Trans-Taiga Road and powerline infrastructure corridor (Figure 29). The La Grande-4 (LG4) hydroelectric dam complex is located approximately 40 km north-northeast of the Property. The CV5 Spodumene Pegmatite, part of the Shaakichiuwaanaan MRE, is located central to the Property, approximately 13.5 km south of KM270 on the Trans-Taiga Road, and is accessible year-round by all-season road. The CV13 Spodumene Pegmatite is located approximately 3 km west-southwest of CV5.

The Property is comprised of 463 CDC mineral claims that cover an area of approximately 23,710 ha with the primary claim grouping extending dominantly east-west for approximately 51 km as a nearly continuous, single claim block. All claims are registered 100% in the name of Lithium Innova Inc., a wholly owned subsidiary of Patriot Battery Metals Inc.

Figure 29: Shaakichiuwaanaan Property and regional infrastructure. (CNW Group/Patriot Battery Metals Inc.)

GEOLOGY AND GEOLOGICAL INTERPRETATION

The Property overlies a large portion of the Lac Guyer Greenstone Belt, considered part of the larger La Grande River Greenstone Belt, and is dominated by volcanic rocks metamorphosed to amphibolite facies. Rocks of the Guyer Group (amphibolite, iron formation, intermediate to mafic volcanics, peridotite, pyroxenite, komatiite, as well as felsic volcanics) predominantly underly the Property (Figure 32). The amphibolite rocks that trend east-west (generally steeply south dipping) through this region are bordered to the north by the Magin Formation (conglomerate and wacke) and to the south by an assemblage of tonalite, granodiorite, and diorite, in addition to metasediments of the Marbot Group (conglomerate, wacke) in the areas proximal to the CV5 Spodumene Pegmatite. Several regional-scale Proterozoic gabbroic dykes also cut through portions of the Property (Lac Spirt Dykes, Senneterre Dykes). The lithium pegmatites on the Property are hosted predominantly within amphibolite's, metasediments, and to a lesser extent ultramafic rocks.

Exploration of the Property has outlined three primary mineral exploration trends, crossing dominantly east-west over large portions of the Property – Golden Trend (gold), Maven Trend (copper, gold, silver), and CV Trend (Li-Cs-Ta Pegmatite). The Golden Trend is focused over the northern areas of the Property, the Maven Trend in the southern areas, and the CV Trend "sandwiched" between. Historically, the Golden Trend has received the exploration focus followed by the Maven Trend. However, the identification of the CV Trend and the numerous lithium-tantalum pegmatites discovered to date, represents a previously unknown lithium pegmatite district that was first identified in 2016/2017 by Dahrouge Geological Consulting Ltd. and the Company. The Company's Vice President of Exploration, Darren L. Smith, M.Sc., P.Geo., was a member of the initial team that identified the potential at Shaakichiuwaanaan, later joining the Company's Advisory Board in 2018, and as Vice President of Exploration in 2019. Mr. Smith has managed the exploration of the Shaakichiuwaanaan Property since the initial work programs, including drilling of the lithium pegmatites.

At the Property, including CV5 and CV13, lithium mineralization is observed to occur within lithium-cesium-tantalum ("LCT") pegmatites, which may be exposed at surface as isolated high relief 'whale-back' landforms (i.e., outcrops) (Figure 30 and Figure 31). Given the proximity of some lithium pegmatite outcrops to each other at the various clusters, as well as the shallow till cover, it is probable that some of the outcrops may reflect a discontinuous surface exposure of a single, larger pegmatite 'outcrop' subsurface. Further, the high number of well-mineralized pegmatites along the trend at these clusters indicates a strong potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present.

To date, the LCT pegmatites at the Property have been observed to occur within a corridor of approximately 1 km in width that extends in a general east-west direction across the Property for at least 25 km – the 'CV Lithium Trend' – with significant areas of prospective trend that remain to be assessed. The core area of the trend includes the CV5 and CV13 spodumene pegmatites with approximate strike lengths of 4.6 km and 2.3 km, respectively, as defined by drilling to date and which remain open. Further, the CV5 and CV13 spodumene pegmatites are situated along the same geological trend, separated by approximately 2.9 km of highly prospective lithium pegmatite trend (Figure 3). This corridor remains to be drill tested; however, current interpretation of the collective dataset indicates a reasonable potential for connectivity of the pegmatite body(s) that define the CV5 and CV13 pegmatites.

To date, eight (8) distinct lithium pegmatite clusters have been discovered along the CV Lithium Trend at the Property – CV4, CV5, CV8, CV9, CV10, CV12, CV13, and CV14. Each of these clusters includes multiple lithium pegmatite outcrops in close proximity, oriented along the same local trend, and have been grouped to simplify exploration approach and discussion (Figure 33). The Mineral Resource Estimate reported herein is limited to only the CV5 and CV13 spodumene pegmatites (Figure 3).

The pegmatites at the Property, including CV5 and CV13, are very coarse-grained and off-white in appearance, with darker sections commonly composed of mica and smoky quartz, and occasionally tourmaline. Spodumene is the dominant lithium-bearing mineral identified at all the lithium occurrences documented to date. It occurs as typically centimetre to decimetre-scale crystals that may exceed 1.5 m in length and range in colour from cream-white, to light-grey, to light-green. Minor localized lepidolite has been observed in core and in a small number of lithium pegmatite outcrops.

To date, at the CV5 Spodumene Pegmatite, multiple individual spodumene pegmatite dykes have been geologically modelled. However, a vast majority of the Mineral Resource is hosted within a single, large, principal spodumene pegmatite dyke, which is flanked on both sides by multiple, subordinate, sub-parallel trending dykes. The CV5 Spodumene Pegmatite, including the principal dyke, is modelled to extend continuously over a lateral distance of at least 4.6 km and remains open along strike at both ends and to depth along a large portion of its length. The width of the currently known mineralized corridor at CV5 is approximately ~500 m, with spodumene pegmatite intersected at depths of more than 450 m in some locations (vertical depth from surface). The pegmatite dykes at CV5 trend west-southwest (approximately 250°/070° RHR), and therefore dip northerly, which is different than the host amphibolites, metasediments, and ultramafics which dip moderately in a southerly direction.

The principal spodumene pegmatite dyke at CV5 ranges from <10 m to more than 125 m in true width, and may pinch and swell aggressively along strike, as well as up and down dip. It is primarily the thickest at near-surface to moderate depths (<225 m), forming a relatively bulbous, elongated shape, which may flair to surface and to depth variably along its length. As drilling has focused over the principal dyke, the immediate CV5 corridor has not been adequately drill tested and it is interpreted that additional subordinate pegmatite lenses are situated proximal, especially in the southcentral areas of the deposit. The pegmatites that define CV5 are relatively undeformed and very competent, although likely have some meaningful structural control.

The geological model underpinning the MRE for the CV13 Spodumene Pegmatite interprets a series of flat-lying to moderately dipping (northerly), sub-parallel trending spodumene pegmatite bodies, of which three appear to dominate. The pegmatite bodies are coincident with the apex of a regional structural flexure whereby the pegmatite manifests a west arm trending ~290° and an east arm trending ~230°. Drilling to date indicates the east arm includes significantly more pegmatite stacking compared to the west, and also carries a significant amount of the overall CV13 Pegmatite tonnage and grade, highlighted by the high-grade Vega Zone.

The CV13 Pegmatite ranges in true thickness from <5 m to more than 40 m and extends continuously over a collective strike length of approximately 2.3 km, along its west and east arms. The CV13 Spodumene Pegmatite, which includes all proximal pegmatite lenses, remains open along strike at both ends and to depth along a significant portion of its length. Spodumene mineralization has been traced more than 400 m down-dip; however, due to the typically shallow dips of the pegmatite bodies, is only ~200 m vertical depth from surface.

Both the CV5 and CV13 spodumene pegmatites display internal fractionation along strike and up/down dip, which is evidenced by variation in mineral abundance including spodumene and tantalite. This is highlighted by the high-grade Nova Zone (CV5) and Vega Zone (CV13), each situated at the base of their respective pegmatite lenses, and traced over a significant distance with multiple drill hole intercepts (core length) ranging from 2 to 25 m (CV5) and 2 to 10 m (CV13) at >5% Li2O, respectively, each within a significantly wider mineralized zone of >2% Li2O (Figure 16 and Figure 26). The Vega Zone is situated approximately 6 km south-west and along geological trend of the Nova Zone. Both zones share several similarities including lithium grades and very coarse decimetre to metre size spodumene crystals. However, both pegmatite zones have distinct orientations whereby the Vega Zone is relatively flat-lying to shallow dipping while the Nova Zone is steeply dipping to vertical.

The CV5 Spodumene Pegmatite (4.6 km in strike length) has currently been delineated to within approximately 1.5 km of the CV4 Spodumene Pegmatite to the east, and to within approximately 2.9 km of the CV13 Spodumene Pegmatite (2.3 km in strike length) to the west (Figure 3). The CV12 Spodumene Pegmatite cluster is situated ~2.4 km northwest along strike of CV13. Collectively, this area of the CV Lithium Pegmatite trend extends nearly 15 km, of which 6.9 km is confirmed by drilling to be continuous spodumene pegmatite hosting defined Mineral Resources, with ~8 km of this highly prospective trend remaining to be drill tested.

The scale of LCT pegmatite present along this local trend (CV12 through CV4), as well as the similar mineralogy and very coarse spodumene crystal size, suggests a deeply rooted and common 'plumbing' system and source of the lithium mineralized bodies discovered to date. The area of the CV Lithium Trend, extending from CV12 easterly to CV4, is therefore highly prospective with data collected to date suggesting a reasonable potential for lithium pegmatite to be present throughout this trend, and potentially continuously. Due to a veil of glacial till cover, there is poor outcrop exposure, therefore requiring significant drill testing to confirm continuity.

Figure 30: Principal spodumene pegmatite body outcropping at CV5 with drill hole CF21-001 in forefront (left); typical mineralization from drill core at CV5 (right). (CNW Group/Patriot Battery Metals Inc.)

Figure 31: Principal spodumene pegmatite outcrop at CV13 (looking northeast). (CNW Group/Patriot Battery Metals Inc.)

Figure 32: Property geology and mineral exploration trends. (CNW Group/Patriot Battery Metals Inc.)

Figure 33: Spodumene pegmatite clusters at the Property discovered to date. (CNW Group/Patriot Battery Metals Inc.)

DRILLING TECHNIQUES AND CLASSIFICATION CRITERIA

The Shaakichiuwaanaan Mineral Resource Estimate, including the CV5 and CV13 spodumene pegmatites is supported by 537 diamond drill holes of NQ (predominant) or HQ size, completed over the 2021, 2022, 2023, and 2024 (through the end of April – drill hole CV24-526) programs, for a collective total of 169,526 m, as well as eighty-eight (88) outcrop channels totalling 520 m. This equates to 344 holes (129,673 m) and eleven (11) outcrop channels (63 m) at CV5, and 132 holes (23,059 m) and fifty-four (54) outcrop channels (340 m) at CV13 (Figure 34, Figure 35, and Figure 36).

Each drill hole collar was surveyed with an RTK tool (Topcon GR5 or Trimble Zephyr 3), with some minor exceptions that were surveyed using a handheld GPS (Garmin GPSMAP 64s) only (Table 4). Downhole deviation surveys for each drill hole were completed with a Devico DeviGyro tool (2021 holes), Reflex Gyro Sprint IQ tool (2022, 2023, and 2024 holes), Axis Champ Gyro (2023 holes), or Reflex OMNI Gyro Sprint IQ (2024 holes). Survey shots were continuous at approximate 3-5 m intervals. The use of the gyro tool system negated potential deflection issues arising from minor but common pyrrhotite within the host amphibolite. All collar and downhole deviation data have been validated by the project geologists on site, and by the database lead.

Drill core has not been oriented; however, downhole optical and acoustic televiewer surveys have been completed on multiple holes, at both CV5 and CV13, to assess overall structure. This data guided the current geological models supporting this Mineral Resource Estimate.

At CV5, drill hole collar spacing is dominantly grid based. Several collars are typically completed from the same pad at varied orientations targeting pegmatite pierce points of ~50 to 100 m spacing. The initial drill holes targeting CV5, completed in 2021, assumed a southerly dip to the pegmatite and therefore three (3) of four (4) holes were oriented northerly. However, most holes completed to date are oriented southerly (typically 158°), to cross-cut perpendicular the steeply, northerly dipping pegmatite, apart from drill holes targeting specific structure or areas of the pegmatite.

At CV13, drill hole spacing is a combination of grid based (at ~100 spacing) and fan based. Several collars are typically completed from the same pad at varied orientations targeting pegmatite pierce points of ~50 to 100 m spacing. Due to the varied orientation of the pegmatite bodies along strike at CV13, hole orientations may vary widely.

Drill hole spacing and orientation at the CV5 and CV13 pegmatites is sufficient to support the geological models and resource classifications applied herein.

All drill holes were completed by Fusion Forage Drilling Ltd. of Hawkesbury, ON. Procedures at the drill followed industry best practices with drill core placed in either 4 or 5 ft long, typically flat, square-bottom wooden boxes with the appropriate hole and box ID noted and block depth markers placed in the box. Core recovery typically exceeds 90%. Once full, the box was fibre taped shut with wooden lids at the drill and transported (helicopter and truck) to Mirage Lodge for processing.

Channel sampling followed industry best practices with a 3 to 5 cm wide, saw-cut channel completed across the pegmatite outcrop as practical, perpendicular to the interpreted pegmatite strike. Samples were collected at ~1 m contiguous intervals with the channel bearing noted, and GPS coordinate collected at the start and end points of the channel. Channel samples were transported along the same route as drill core for processing at Mirage Lodge.

Figure 34: Diamond drill hole locations at the CV5 Spodumene Pegmatite, which form the basis of the MRE. (CNW Group/Patriot Battery Metals Inc.)

Figure 35: Channel locations at the CV5 Spodumene Pegmatite included in the MRE. (CNW Group/Patriot Battery Metals Inc.)

Figure 36: Diamond drill hole and channel locations at the CV13 Spodumene Pegmatite, which form the basis of the MRE. (CNW Group/Patriot Battery Metals Inc.)

SAMPLING AND SUB-SAMPLING TECHNIQUES

Core sampling protocols met industry standard practices. Upon receipt at the core shack at Mirage Lodge, all drill core is pieced together, oriented to maximum foliation, metre marked, geotechnically logged (TCR, RQD, ISRM, and Q-Method (since mid-winter 2023)), alteration logged, geologically logged (rock type), and sample logged on an individual sample basis. Wet and dry core box photos are also collected of all core drilled, regardless of perceived mineralization. Specific gravity measurements of entire pegmatite samples were collected at systematic intervals (approximately 1 SG measurement every 4-5 m) using the water immersion method.

Core sampling was guided by rock type as determined during geological logging (i.e., by a geologist). All pegmatite intervals were sampled in their entirety, regardless of whether spodumene mineralization was noted or not (in order to ensure an unbiased sampling approach) in addition to ~1 to 3 m of sampling into the adjacent host rock (dependent on pegmatite interval length) to "bookend" the sampled pegmatite. The minimum individual sample length is typically 0.3-0.5 m and the maximum sample length is typically 2.0 m. Targeted individual pegmatite sample lengths are 1.0 to 1.5 m. All drill core was saw-cut, using an Almonte automatic core saw in 2022, 2023, and 2024 with one half-core collected for assay, and the other half-core remaining in the box for reference.

Channels were geologically logged upon collection on an individual sample basis; however, were not geotechnically logged. Channel recovery was effectively 100%.

The logging of drill core and channels was qualitative by nature, and included estimates of spodumene grain size, inclusions, and model mineral estimates. These logging practices meet or exceed current industry standard practices and are of appropriate detail to support a Mineral Resource estimation and disclosure herein.

All core samples were bagged and sealed individually, and then placed in large supersacs for added security, palleted, and shipped by third party transport, or directly by representatives of the Company, to the designated sample preparation laboratory (Activation Laboratories Ltd. ("Activation Laboratories") in Ancaster, ON, in 2021, SGS Canada Inc. ("SGS Canada") in either Lakefield, ON, Val-d'Or, QC, or Radisson, QC, in 2022, 2023, and 2024, being tracked during shipment along with chain of custody documentation. A small number of holes were sent for sample preparation to SGS Canada's Sudbury, ON, and Burnaby, BC, facilities in 2022. Upon arrival at the laboratory, the samples were cross-referenced with the shipping manifest to confirm all samples were accounted for and had not been tampered with.

SAMPLE ANALYSIS METHOD AND QUALITY CONTROL

Core samples collected from 2021 drill holes were shipped to Activation Laboratories in Ancaster, ON, for standard sample preparation (code RX1) which included crushing to 80% passing 10 mesh, followed by a 250 g riffle split and pulverizing to 95% passing 105 microns. All 2021 core sample pulps were analyzed, at the same lab, for multi-element (including lithium) by four-acid digestion with ICP-OES finish (package 1F2) and tantalum by INAA (code 5B), with any samples returning >8,000 ppm Li by 1F2 reanalyzed for Li by code 8-4 Acid ICP Assay. Activation Laboratories is a commercial lab with the relevant accreditations (ISO 17025) and is independent of the Company.

Core samples collected from 2022 and 2023 drill holes CV22-015 through CV23-107 were shipped to SGS Canada's laboratory in either Lakefield, ON (vast majority), Sudbury, ON (CV22-028, 029, 030), or Burnaby, BC (CV22-031, 032, 033, and 034), for standard sample preparation (code PRP89) which included drying at 105°C, crush to 75% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. Core samples collected from 2023 drill holes CV23-108 through 365 were shipped to SGS Canada's laboratory in Val-d'Or, QC, for standard sample preparation (code PRP89). Core samples collected from 2024 drill holes were shipped to SGS Canada's laboratory in either Val-d'Or, QC, or Radisson, QC, for a sample preparation (code PRP90 special) which includes drying at 105°C, crush to 90% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns.

All 2022, 2023, and 2024 (through drill hole CV24-526) core sample pulps were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50). SGS Canada is a commercial lab with the relevant accreditations (ISO 17025) and is independent of the Company.

A Quality Assurance / Quality Control (QAQC) protocol following industry best practices was incorporated into the drill programs and included systematic insertion of quartz blanks and certified reference materials into sample batches, as well as collection of quarter-core duplicates (through hole CV23-190 only), at a rate of approximately 5% each. Additionally, analysis of pulp-split and coarse-split (through hole CV23-365 only) sample duplicates were completed to assess analytical precision at different stages of the laboratory preparation process, and external (secondary) laboratory pulp-split duplicates were prepared at the primary lab for subsequent check analysis and validation at a secondary lab (SGS Canada in 2021, and ALS Canada in 2022, 2023, and 2024).

Channel samples collected in 2017 were shipped to SGS Canada's laboratory in Lakefield, ON, for standard preparation. Pulps were analyzed at SGS Canada's laboratory in either Lakefield, ON, (2017), or Burnaby, BC (2022), for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish. All subsequent channel samples were shipped to Val-d'Or, QC for standard sample preparation with the pulps shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50).

A QAQC protocol following industry best practices was incorporated into the channel programs and included systematic insertion of quartz blanks and certified reference materials into sample batches.

CRITERIA USED FOR CLASSIFICATION

The Shaakichiuwaanaan resource classification has been completed in accordance with the NI 43-101, JORC 2012, and CIM Definition Standards for Mineral Resources and Reserves reporting guidelines. All reported Mineral Resources have been constrained by conceptual open-pit or underground mineable shapes to demonstrate reasonable prospects for eventual economic extraction ("RPEEE").

Blocks were classified as Indicated when:

  • Demonstrated geological continuity and minimum thickness of 2 m.
  • The drill spacing was 70 m or lower and meeting the minimum estimation criteria parameters.
  • Grade continuity at the reported cut-off grade.

Blocks were classified Inferred when drill spacing was between 70 m and 140 m and meeting the minimum estimation criteria parameters. Geological continuity and a minimum thickness of 2 m were also mandatory.  There are no measured classified blocks. Pegmatite dykes or extension with lower level of information / confidence were also not classified.

Classification shapes are created around contiguous blocks at the stated criteria with consideration for the selected mining method. The Mineral Resource Estimate appropriately reflect the view of the Competent Person.

ESTIMATION METHODOLOGY

Compositing was done every 1.0 m. Unsampled intervals were assigned a grade of 0.0005% Li and 0.25 ppm Ta. Capping was done after compositing. Based on the statistical analysis capping varies by lithological domain.

CV5 Parameters 

For the spodumene-rich domain within the CV5 principal pegmatite, no capping was required for Li2O, but Ta2O5 was capped at 3,000 ppm. For the feldspar-rich domain within the CV5 principal pegmatite, a capping of 3.5% Li2O and 1,500 ppm Ta2O5 was applied. For the parallel dykes a capping of 5% Li2O and 1,200 ppm Ta2O5 was applied.

Variography was done both in Leapfrog Edge and Supervisor. For Li2O, a well-structured variogram model was obtained for the CV5 principal pegmatite's spodumene-rich domain. For the CV5 principal pegmatite, both domains (spodumene-rich and feldspar-rich domains) were estimated using ordinary kriging (OK), using Leapfrog Edge.

For Ta2O5, the spodumene-rich domain and the feldspar-rich domain within CV5 principal pegmatite did not yield well-structured variograms. Therefore, Ta2O5 was estimated using Inverse Distance Squared (ID2).

The remaining pegmatite dykes at CV5 (8) domains did not yield well-structured variograms for either Li2O and Ta2O5 and therefore were estimated using Inverse Distance Squared (ID2), also using Leapfrog Edge.

Three (3) orientated search ellipsoids were used to select data and interpolate Li2O and Ta2O5 grades in successively less restrictive passes. The ellipse sizes and anisotropies were based on the variography, drillhole spacing, and pegmatite geometry. The ellipsoids were 100 m x 50 m x 30 m, 200 m x 100 m x 60 m, and 400 m x 200 m x 120 m. For the first pass interpolation a minimum of five (5) composites and a maximum of twelve (12) composites with a minimum of two (2) holes were needed to interpolate. For the second and third pass a minimum of three (3) composites with a maximum of twelve (12) without a minimum per hole was used. Variable search ellipse orientations (dynamic anisotropy) were used to interpolate for the eight (8) parallel dykes. Spatial anisotropy of the dykes is respected during estimation using Leapfrog Edge's Variable Orientation tool. The search ellipse follows the trend of the central reference plane of each dyke.

CV13 Parameters

For the CV13 Pegmatite dykes, it was determined that no capping was required for Li2O, but Ta2O5 was capped at 1,500 ppm.

Variography analysis did not yield a well-structured variogram. On CV13, Li2O and Ta2O5 were estimated using ID2 in Leapfrog Edge.

Three (3) orientated search ellipsoids were used to select data and interpolate Li2O and Ta2O5 grades in successively less restrictive passes. The ellipse sizes and anisotropies were based on the variography, drillhole spacing, and pegmatite geometry. The ellipsoids were 80 m x 60 m x 10 m, 160 m x 120 m x 20 m, and 320 m x 240 m x 40 m. For the first pass interpolation a minimum of five (5) composites and a maximum of twelve (12) composites with a minimum of two (2) holes were needed to interpolate. For the second and third pass a minimum of three (3) composites with a maximum of twelve (12) without a minimum per hole was used. Variable search ellipse orientations (dynamic anisotropy) were used to interpolate the dykes. Spatial anisotropy of the dykes is respected during estimation using Leapfrog Edge's Variable Orientation tool. The search ellipse follows the trend of the central reference plane of each dyke.

Parent cells of 10 m x 5 m x 5 m, subblocked four (4) times in each direction (for minimum subcells of 2.5 m in x, 1.25 m in y, and 1.25 m in z were used. Subblocks are triggered by the geological model. Li2O and Ta2O5 grades are estimated on the parent cells and automatically populated to subblocks.

The CV5 and CV13 block model is rotated around the Z axis (Leapfrog 340°). Hard boundaries between all the pegmatite domains were used for all Li2O and Ta2O5 estimates. For CV5, the Mineral Resource Estimate includes blocks within the pit shell above the cut-off grade of 0.40% Li2O or all blocks within underground mining shapes constructed with a 0.60% cut-off grade. For CV13, the Mineral Resource Estimate includes blocks within the pit shell above the cut-off grade of 0.40% Li2O or all blocks within underground mining shapes constructed with a 0.80% cut-off grade.

Validation of the block model was performed using Swath Plots, nearest neighbours grade estimates, global means comparisons, and by visual inspection in 3D and along plan views and cross-sections.

CUT-OFF GRADE AND BASIS FOR SELECTION

The cut-off grade ("COG") adopted for the Mineral Resource Estimate is 0.40% Li2O for open-pit resources (CV5 and CV13), 0.60% Li2O for underground resources at CV5, and 0.80% Li2O for underground resources at CV13. It has been determined based on operational cost estimates, primarily through benchmarking, for mining (open-pit and underground methods), tailings management, G&A, and concentrate transport costs from the mine site to Bécancour, QC, as the base case. Process recovery assumed a Dense Media Separation (DMS) only operation at approximately 70% average recovery into a 5.5% Li2O spodumene concentrate (Figure 37). A spodumene concentrate price of US $1,500 was assumed with USD/CAD exchange rate of 0.76. A royalty of 2% was applied.

MINING & METALLURGICAL METHODS AND PARAMETERS, AND OTHER MODIFYING FACTORS CONSIDERED

Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. This estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, economic, or other relevant issues.

The extraction scenario constraint retained for the Mineral Resource Estimate at the CV5 Spodumene Pegmatite is mainly open-pit. A pit slope ranging between 45° and 53° was assumed, resulting in a strip ratio of 8.3 (waste to minable resource) at a revenue factor of 1. Underground long hole mining method accounts for approximately 11% of CV5 resources.

The extraction scenario constraint retained for the maiden Mineral Resource Estimate at the CV13 Spodumene Pegmatite is mainly open-pit. A pit slope of 45° was assumed, resulting in a strip ratio of 9.8 (waste to minable resource) at a revenue factor of 1. Underground mining method accounts for approximately 7% of CV13 resources

The metallurgical assumptions are supported by metallurgical test programs completed by SGS Canada at their Lakefield, ON, facility. The testwork included Heavy Liquid Separation ("HLS") and magnetics, which has produced 6+% Li2O spodumene concentrates at >70% recovery on drill core samples from both the CV5 and CV13 pegmatites. A subsequent Dense Media Separation ("DMS") test on CV5 Spodumene Pegmatite material returned a spodumene concentrate grading 5.8% Li2O at 79% recovery, strongly indicating potential for a DMS only operation to be applicable. For the Mineral Resource conceptual mining shapes, based on a grade versus recovery curve of the test work completed to date, an average recovery of approximately 70% to produce a 5.5% Li2O spodumene concentrate was used (Figure 37).

Various mandates required for advancing the Project towards economic studies have been initiated, including but not limited to, environmental baseline, metallurgy, geotechnical, geomechanics, hydrogeology, hydrology, stakeholder engagement, geochemical characterization, as well as concentrate transport and logistical studies.

Figure 37: Metallurgical testwork results of global lithium recoveries for HLS and DMS for the CV5 Pegmatite. The estimated recovery of a three-size range DMS concentrator is shown as a recovery curve (generating a 5.5 % Li2O concentrate). (CNW Group/Patriot Battery Metals Inc.)

QUALIFIED/COMPETENT PERSON

The information in this news release that relates the Mineral Resource Estimate for the Shaakichiuwaanaan Project (CV5 and CV13 spodumene pegmatites), as well as other relevant technical information for the Property, is based on, and fairly represents, information compiled by Mr. Todd McCracken, P.Geo., who is a Qualified Person as defined by NI 43-101, and member in good standing with the Ordre des Géologues du Québec and with the Professional Geoscientists of Ontario. Mr. McCracken has reviewed and approved the technical information in this news release.

Mr. McCracken is Director – Mining & Geology – Central Canada, of BBA Engineering Ltd. and is independent of the Company. Mr. McCracken does not hold any securities in the Company.

Mr. McCracken has sufficient experience, which is relevant to the style of mineralization, type of deposit under consideration, and to the activities being undertaken to qualify as a Competent Person as described by the JORC Code, 2012. Mr. McCracken consents to the inclusion in this news release of the matters based on his information in the form and context in which it appears.

Table 4: Attributes for drill holes and channels included in the Shaakichiuwaanaan MRE (CV5).

Hole ID

Hole 
Type 

Substrate 

Total Depth 
(m) 

Azimuth 
(°) 

Dip 
(°) 

Easting 

Northing 

Elevation 
(m) 

Core Size 

Pegmatite 

CF21-001

DD

Land

229.1

340

-45

570312.0

5930632.4

382.9

NQ

CV5

CF21-002

DD

Land

274.2

340

-45

570417.4

5930652.0

382.9

NQ

CV5

CF21-003

DD

Land

106.1

160

-45

570284.8

5930718.2

377.5

NQ

CV5

CF21-004

DD

Land

148.3

340

-45

569797.9

5930446.4

379.7

NQ

CV5

CV22-015

DD

Ice

176.9

158

-45

570514.7

5930803.9

372.8

NQ

CV5

CV22-016

DD

Ice

252.1

158

-45

570476.4

5930897.7

372.9

NQ

CV5

CV22-017

DD

Ice

344.7

158

-45

571422.5

5931224.6

372.9

NQ

CV5

CV22-018

DD

Ice

149.9

158

-45

570604.1

5930841.2

372.9

NQ

CV5

CV22-019

DD

Ice

230.9

158

-45

570573.7

5930929.8

373.0

NQ

CV5

CV22-020

DD

Ice

203.8

338

-45

571532.0

5931099.6

372.9

NQ

CV5

CV22-021

DD

Ice

246.0

158

-45

571533.1

5931095.7

372.9

NQ

CV5

CV22-022

DD

Ice

184.0

158

-45

570695.2

5930878.2

372.9

NQ

CV5

CV22-023

DD

Ice

285.0

338

-45

571202.6

5930974.2

372.8

NQ

CV5

CV22-024

DD

Ice

156.0

158

-45

570791.5

5930912.6

372.7

NQ

CV5

CV22-025

DD

Ice

153.0

158

-45

570883.9

5930953.5

372.8

NQ

CV5

CV22-026

DD

Ice

156.0

0

-90

571203.1

5930973.7

372.8

NQ

CV5

CV22-027

DD

Ice

150.1

158

-45

570976.2

5930991.9

372.8

NQ

CV5

CV22-028

DD

Ice

291.0

158

-45

570940.9

5931083.5

372.9

NQ

CV5

CV22-029

DD

Ice

165.0

158

-45

571068.2

5931036.9

372.6

NQ

CV5

CV22-030

DD

Ice

258.0

158

-45

570385.1

5930855.6

372.8

NQ

CV5

CV22-031

DD

Ice

231.0

158

-45

570849.7

5931043.2

372.7

NQ

CV5

CV22-033

DD

Land

261.1

158

-45

571349.6

5931146.9

376.3

NQ

CV5

CV22-034

DD

Land

329.8

158

-55

570138.4

5930801.6

380.8

NQ

CV5

CV22-035

DD

Land

281.0

158

-45

571233.8

5931157.5

378.2

NQ

CV5

CV22-036

DD

Land

334.8

158

-45

570041.9

5930778.2

379.9

NQ

CV5

CV22-037

DD

Land

311.0

158

-45

571441.5

5931177.6

377.3

NQ

CV5

CV22-038

DD

Land

316.8

158

-45

569940.4

5930729.6

377.1

NQ

CV5

CV22-039

DD

Land

256.9

158

-45

571398.5

5931163.6

377.0

NQ

CV5

CV22-040

DD

Land

403.8

158

-45

569853.1

5930698.0

375.6

NQ

CV5

CV22-041

DD

Land

295.9

158

-45

571487.3

5931201.3

379.2

NQ

CV5

CV22-042

DD

Land

393.0

158

-65

571487.1

5931201.7

379.1

NQ

CV5

CV22-043

DD

Land

513.6

158

-59

569853.0

5930698.2

375.5

NQ

CV5

CV22-044

DD

Land

414.5

158

-45

571378.4

5931326.0

379.1

NQ

CV5

CV22-045

DD

Land

377.4

158

-45

569764.1

5930673.7

377.3

NQ

CV5

CV22-046

DD

Land

463.9

158

-50

570343.7

5930959.1

383.3

NQ

CV5

CV22-047

DD

Land

554.1

158

-59

571378.5

5931326.2

378.9

NQ

CV5

CV22-048

DD

Land

449.2

158

-45

570257.0

5930903.3

381.1

NQ

CV5

CV22-049

DD

Land

304.8

158

-45

571132.3

5931145.9

376.5

NQ

CV5

CV22-050

DD

Land

339.0

158

-60

571132.6

5931146.4

376.4

NQ

CV5

CV22-051

DD

Land

520.8

158

-58

570158.5

5930876.4

382.2

NQ

CV5

CV22-052

DD

Land

284.8

158

-45

571042.1

5931111.4

375.5

NQ

CV5

CV22-053

DD

Water

218.5

158

-45

570756.9

5930998.2

373.1

NQ

CV5

CV22-054

DD

Land

126.4

158

-58

570014.4

5930567.1

378.9

NQ

CV5

CV22-055

DD

Land

320.0

158

-60

571042.1

5931111.7

375.5

NQ

CV5

CV22-056

DD

Water

241.9

158

-45

570678.6

5930970.9

373.3

NQ

CV5

CV22-057

DD

Land

443.1

158

-45

570014.4

5930566.9

379.0

NQ

CV5

CV22-058

DD

Land

299.0

158

-45

571169.8

5931057.3

376.4

NQ

CV5

CV22-059

DD

Water

352.9

158

-45

570300.2

5930796.4

373.2

NQ

CV5

CV22-060

DD

Land

147.1

158

-45

570148.9

5930635.1

383.4

NQ

CV5

CV22-061

DD

Land

340.9

158

-45

571279.4

5931068.3

378.9

NQ

CV5

CV22-062

DD

Land

220.8

158

-45

570233.0

5930693.9

375.8

NQ

CV5

CV22-063

DD

Land

325.4

158

-45

571580.8

5931234.3

376.5

NQ

CV5

CV22-064

DD

Water

340.7

158

-53

570199.3

5930782.3

373.2

NQ

CV5

CV22-065

DD

Land

242.0

158

-45

570331.7

5930722.3

381.7

NQ

CV5

CV22-066

DD

Land

437.0

158

-48

571560.9

5931295.4

377.0

NQ

CV5

CV22-067

DD

Land

281.1

158

-45

570430.5

5930741.1

380.0

NQ

CV5

CV22-068

DD

Land

233.0

158

-45

569930.0

5930522.4

378.2

NQ

CV5

CV22-069

DD

Land

494.1

158

-65

571560.6

5931295.6

377.0

NQ

CV5

CV22-070

DD

Water

297.4

158

-45

570118.7

5930731.4

373.2

NQ

CV5

CV22-071

DD

Land

377.0

158

-45

569827.9

5930505.3

377.5

NQ

CV5

CV22-072

DD

Water

404.0

158

-45

570080.9

5930689.0

373.2

NQ

CV5

CV22-073

DD

Land

541.9

158

-52

571274.6

5931307.1

381.4

NQ

CV5

CV22-074

DD

Land

398.0

158

-45

569719.7

5930500.1

385.9

NQ

CV5

CV22-075

DD

Water

372.4

158

-45

569987.6

5930639.4

373.7

NQ

CV5

CV22-076

DD

Land

161.0

158

-45

571349.0

5930872.5

377.7

NQ

CV5

CV22-078

DD

Land

163.8

158

-65

571348.8

5930872.4

377.4

NQ

CV5

CV22-079

DD

Land

425.0

158

-45

571661.1

5931296.1

379.5

NQ

CV5

CV22-080

DD

Water

359.0

158

-45

569929.5

5930618.7

374.3

NQ

CV5

CV22-083

DD

Land

440.0

158

-65

571660.9

5931296.4

379.5

NQ

CV5

CV22-086

DD

Water

200.0

158

-45

571400.8

5931070.6

373.6

NQ

CV5

CV22-089

DD

Water

251.0

158

-45

571636.1

5931142.4

373.1

NQ

CV5

CV22-090

DD

Land

416.0

158

-45

571743.8

5931362.1

378.3

NQ

CV5

CV22-093

DD

Land

408.2

158

-65

571743.5

5931362.3

378.3

NQ

CV5

CV22-097

DD

Land

506.1

158

-72

571644.7

5931342.7

378.5

NQ

CV5

CV22-098

DD

Land

374.0

158

-45

570791.5

5931143.5

380.7

NQ

CV5

CV22-100

DD

Land

458.0

158

-45

571472.6

5931356.6

376.6

NQ

CV5

CV22-102

DD

Land

393.2

158

-45

570626.6

5931060.4

378.5

NQ

CV5

CV23-105

DD

Land

452.0

158

-65

571832.1

5931386.7

376.5

NQ

CV5

CV23-106

DD

Land

491.0

158

-65

571929.5

5931439.0

377.8

NQ

CV5

CV23-107

DD

Land

428.2

158

-65

572027.0

5931475.3

374.5

NQ

CV5

CV23-108

DD

Land

461.0

158

-65

572118.4

5931506.1

374.0

NQ

CV5

CV23-109

DD

Land

392.1

158

-45

571832.3

5931386.2

376.5

NQ

CV5

CV23-110

DD

Land

431.0

158

-45

571866.1

5931434.5

375.7

NQ

CV5

CV23-111

DD

Land

356.0

158

-45

572027.2

5931474.7

374.4

NQ

CV5

CV23-112

DD

Land

377.1

158

-45

571929.7

5931438.5

377.8

NQ

CV5

CV23-113

DD

Land

389.0

158

-45

572118.5

5931505.7

374.2

NQ

CV5

CV23-114

DD

Land

500.1

158

-55

571865.9

5931434.7

375.7

NQ

CV5

CV23-115

DD

Land

431.1

158

-45

572056.8

5931529.0

373.0

NQ

CV5

CV23-116

DD

Land

476.0

158

-65

572214.5

5931532.1

373.5

NQ

CV5

CV23-117

DD

Land

566.1

158

-75

571865.9

5931434.7

375.7

NQ

CV5

CV23-118

DD

Land

437.1

158

-45

572214.8

5931531.4

373.4

NQ

CV5

CV23-119

DD

Land

389.0

158

-45

572099.4

5931442.2

373.8

NQ

CV5

CV23-120

DD

Land

443.0

158

-45

572150.2

5931552.7

376.5

NQ

CV5

CV23-121

DD

Land

454.7

158

-48

571782.1

5931402.9

377.0

NQ

CV5

CV23-122

DD

Land

403.9

158

-45

572167.6

5931496.0

375.3

NQ

CV5

CV23-123

DD

Land

386.0

158

-45

571997.7

5931407.9

374.2

NQ

CV5

CV23-124

DD

Land

653.0

158

-45

571955.3

5931497.9

374.4

NQ

CV5

CV23-125

DD

Land

545.0

158

-65

572647.7

5931670.5

382.4

NQ

CV5

CV23-127

DD

Land

548.0

158

-59

571680.9

5931383.8

375.3

NQ

CV5

CV23-128

DD

Land

362.0

158

-45

571212.0

5931077.7

376.5

NQ

CV5

CV23-129

DD

Land

380.0

158

-45

571100.3

5931096.5

375.6

NQ

CV5

CV23-130

DD

Land

377.0

158

-45

571171.8

5931167.6

374.9

NQ

CV5

CV23-131

DD

Ice

454.9

158

-45

571907.3

5931366.9

373.2

NQ

CV5

CV23-132

DD

Land

374.0

158

-49

571068.0

5931148.3

374.7

NQ

CV5

CV23-133

DD

Land

604.8

220

-45

572646.6

5931668.7

382.6

NQ

CV5

CV23-134

DD

Land

331.0

158

-45

571281.9

5931163.8

379.2

NQ

CV5

CV23-135

DD

Land

360.6

158

-60

571171.6

5931167.9

374.9

NQ

CV5

CV23-136

DD

Ice

403.9

158

-45

572240.8

5931603.3

373.1

NQ

CV5

CV23-137

DD

Land

389.0

158

-65

571067.9

5931148.6

374.7

NQ

CV5

CV23-138

DD

Land

359.1

158

-60

571281.9

5931163.8

379.2

NQ

CV5

CV23-139

DD

Ice

565.9

158

-65

572396.1

5931617.8

372.9

NQ

CV5

CV23-140

DD

Ice

545.3

158

-65

572306.4

5931573.2

373.0

NQ

CV5

CV23-141

DD

Land

400.9

158

-65

571781.4

5931403.7

377.9

NQ

CV5

CV23-142

DD

Land

359.0

158

-73

571387.3

5931180.7

377.2

NQ

CV5

CV23-143

DD

Land

530.2

158

-45

572647.9

5931670.0

382.4

NQ

CV5

CV23-145

DD

Land

53.0

0

-90

569657.7

5930878.2

372.7

HQ

CV5

CV23-146

DD

Ice

416.0

158

-45

572306.4

5931573.2

373.0

NQ

CV5

CV23-148

DD

Land

332.0

158

-58

571387.4

5931180.3

377.3

NQ

CV5

CV23-150

DD

Land

302.1

0

-90

571426.9

5931160.9

376.7

NQ

CV5

CV23-151

DD

Ice

486.0

158

-45

572396.1

5931617.8

372.9

NQ

CV5

CV23-153

DD

Land

300.1

0

-90

571785.2

5931397.3

378.6

NQ

CV5

CV23-154

DD

Ice

574.9

158

-65

572487.3

5931652.3

372.9

NQ

CV5

CV23-156

DD

Land

581.3

176

-67

572647.4

5931670.4

382.6

NQ

CV5

CV23-157

DD

Land

278.1

0

-90

570694.6

5931128.2

379.0

NQ

CV5

CV23-159

DD

Land

50.0

0

-90

570520.0

5931135.3

375.6

HQ

CV5

CV23-160A

DD

Land

443.0

158

-45

569567.5

5930470.9

380.4

NQ

CV5

CV23-161

DD

Land

360.0

158

-45

569627.6

5930449.9

384.8

NQ

CV5

CV23-162

DD

Ice

482.0

158

-45

572487.3

5931652.3

372.9

NQ

CV5

CV23-164

DD

Land

200.0

0

-90

570020.1

5930773.5

378.1

NQ

CV5

CV23-165

DD

Land

555.1

165

-60

572647.7

5931669.8

382.4

NQ

CV5

CV23-166A

DD

Land

50.0

0

-90

569353.0

5930256.3

389.1

HQ

CV5

CV23-168A

DD

Ice

388.1

158

-47

571515.8

5931250.9

373.0

NQ

CV5

CV23-169

DD

Land

302.0

0

-90

569733.9

5930466.5

379.2

NQ

CV5

CV23-170

DD

Ice

431.6

158

-45

572461.9

5931596.5

373.0

NQ

CV5

CV23-171

DD

Land

373.4

158

-63

569568.8

5930470.2

380.1

NQ

CV5

CV23-172

DD

Land

404.0

158

-45

569479.9

5930448.2

384.1

NQ

CV5

CV23-173

DD

Ice

516.7

158

-65

572461.9

5931596.5

373.0

NQ

CV5

CV23-174

DD

Land

421.7

0

-90

569992.0

5930469.4

381.0

NQ

CV5

CV23-175

DD

Ice

458.0

158

-57

571316.1

5931230.2

372.9

NQ

CV5

CV23-176

DD

Land

434.0

158

-45

569388.0

5930399.5

386.2

NQ

CV5

CV23-177

DD

Ice

394.7

158

-45

571453.4

5931292.5

373.0

NQ

CV5

CV23-178

DD

Land

473.2

158

-62

569479.8

5930448.6

384.1

NQ

CV5

CV23-179

DD

Ice

437.0

158

-45

572368.8

5931547.6

372.9

NQ

CV5

CV23-180

DD

Land

379.6

150

-60

569387.8

5930400.0

386.2

NQ

CV5

CV23-181

DD

Ice

354.0

158

-46

571316.2

5931230.0

372.9

NQ

CV5

CV23-182

DD

Land

369.0

158

-45

569295.1

5930361.6

389.4

NQ

CV5

CV23-183

DD

Ice

477.1

158

-65

572368.7

5931548.1

372.8

NQ

CV5

CV23-184

DD

Land

417.4

158

-45

569198.6

5930332.0

392.7

NQ

CV5

CV23-185

DD

Ice

425.0

158

-60

571453.3

5931292.7

372.9

NQ

CV5

CV23-187

DD

Land

287.0

158

-45

569698.8

5930420.6

381.0

NQ

CV5

CV23-188

DD

Land

362.0

158

-60

569294.9

5930361.9

389.3

NQ

CV5

CV23-189

DD

Land

287.0

158

-45

571702.0

5931318.4

380.1

NQ

CV5

CV23-190

DD

Land

303.3

338

-45

569596.9

5930277.1

382.2

NQ

CV5

CV23-192

DD

Land

354.0

0

-90

570330.5

5930613.3

383.4

NQ

CV5

CV23-193

DD

Land

250.9

0

-90

569597.2

5930276.2

381.2

NQ

CV5

CV23-194

DD

Land

282.0

0

-90

570802.4

5930731.5

382.1

NQ

CV5

CV23-196

DD

Land

263.0

158

-45

569599.0

5930272.7

381.3

NQ

CV5

CV23-199

DD

Land

261.1

0

-90

570473.2

5930744.8

376.9

NQ

CV5

CV23-201

DD

Land

385.8

158

-45

569015.1

5930242.6

390.3

NQ

CV5

CV23-203

DD

Land

374.0

158

-45

569121.0

5930244.3

396.1

NQ

CV5

CV23-205

DD

Land

353.0

158

-60

569015.0

5930242.8

390.2

NQ

CV5

CV23-206

DD

Land

322.8

158

-60

569120.8

5930244.6

396.1

NQ

CV5

CV23-208

DD

Land

368.0

158

-45

568937.2

5930165.2

391.0

NQ

CV5

CV23-209

DD

Land

434.0

158

-45

569043.4

5930314.1

384.9

NQ

CV5

CV23-211

DD

Land

425.0

158

-60

568937.1

5930165.5

391.0

NQ

CV5

CV23-212

DD

Water

296.0

158

-45

571736.6

5931251.3

372.7

NQ

CV5

CV23-214

DD

Land

502.1

158

-55

569043.3

5930314.3

384.7

NQ

CV5

CV23-217

DD

Land

329.0

158

-45

568751.3

5930093.9

390.0

NQ

CV5

CV23-219

DD

Land

380.1

158

-45

568848.3

5930136.9

394.8

NQ

CV5

CV23-220

DD

Water

275.0

158

-45

571824.6

5931284.7

372.2

NQ

CV5

CV23-222

DD

Land

404.0

158

-65

568751.1

5930094.6

390.1

NQ

CV5

CV23-223

DD

Land

428.0

158

-60

568848.3

5930137.2

394.9

NQ

CV5

CV23-225

DD

Water

452.0

158

-45

571936.0

5931267.6

372.2

NQ

CV5

CV23-226

DD

Land

338.0

158

-45

568706.3

5930070.7

386.7

NQ

CV5

CV23-228

DD

Land

510.0

158

-80

568847.6

5930136.7

394.7

NQ

CV5

CV23-230

DD

Water

311.0

158

-45

570172.3

5930717.7

372.7

NQ

CV5

CV23-231

DD

Land

359.0

158

-65

568706.0

5930071.1

386.6

NQ

CV5

CV23-232

DD

Water

388.9

158

-45

572029.7

5931311.9

373.4

NQ

CV5

CV23-236

DD

Land

383.1

158

-45

568615.9

5930016.6

387.6

NQ

CV5

CV23-240

DD

Land

377.0

158

-45

568637.2

5930099.9

391.5

NQ

CV5

CV23-241

DD

Water

418.9

158

-62

570172.4

5930717.8

372.6

NQ

CV5

CV23-243

DD

Land

395.0

158

-65

568615.8

5930017.1

387.4

NQ

CV5

CV23-244

DD

Water

313.0

158

-45

572125.2

5931345.5

372.9

NQ

CV5

CV23-246

DD

Land

431.0

0

-90

570215.1

5930649.7

382.3

NQ

CV5

CV23-248

DD

Land

466.1

158

-65

568636.9

5930100.4

391.6

NQ

CV5

CV23-251

DD

Water

160.9

158

-45

570938.7

5930950.0

373.2

NQ

CV5

CV23-252

DD

Water

281.0

158

-45

572214.3

5931370.1

372.2

NQ

CV5

CV23-256

DD

Water

296.2

158

-45

571043.3

5930964.1

372.1

NQ

CV5

CV23-259

DD

Land

383.0

158

-45

568550.1

5930065.0

393.5

NQ

CV5

CV23-260

DD

Water

260.0

158

-45

572336.8

5931379.7

372.1

NQ

CV5

CV23-265

DD

Water

277.9

158

-45

571134.0

5931003.5

372.3

NQ

CV5

CV23-268

DD

Land

417.6

158

-65

568550.3

5930064.6

393.4

NQ

CV5

CV23-272A

DD

Water

410.2

158

-45

570328.8

5930856.6

372.8

NQ

CV5

CV23-273

DD

Land

359.0

158

-45

568457.9

5930020.1

392.5

NQ

CV5

CV23-274

DD

Water

226.4

158

-45

571199.9

5930974.4

372.6

NQ

CV5

CV23-279

DD

Water

227.7

158

-45

571250.2

5930988.5

373.1

NQ

CV5

CV23-283

DD

Land

362.0

158

-45

568526.0

5929989.7

387.7

NQ

CV5

CV23-285

DD

Water

469.9

158

-60

570328.4

5930856.8

372.8

NQ

CV5

CV23-287

DD

Water

176.0

158

-45

571336.6

5931031.0

372.8

NQ

CV5

CV23-290

DD

Land

443.0

158

-60

569197.2

5930336.0

392.0

NQ

CV5

CV23-291

DD

Water

169.2

158

-70

571336.7

5931031.4

372.3

NQ

CV5

CV23-292

DD

Land

389.1

158

-65

568457.4

5930020.9

392.5

NQ

CV5

CV23-295

DD

Land

362.9

158

-65

568526.0

5929990.0

387.7

NQ

CV5

CV23-297

DD

Water

194.0

158

-45

571682.5

5931113.0

372.5

NQ

CV5

CV23-298

DD

Water

440.1

158

-64

570449.3

5930831.3

372.7

NQ

CV5

CV23-303

DD

Land

290.9

158

-45

568922.1

5930064.4

395.4

NQ

CV5

CV23-307

DD

Land

357.3

285

-45

569814.2

5930403.6

382.3

NQ

CV5

CV23-308

DD

Water

171.2

158

-46

571479.7

5931087.4

372.9

NQ

CV5

CV23-313

DD

Water

371.0

158

-45

570449.7

5930830.8

372.7

NQ

CV5

CV23-314

DD

Water

359.0

338

-45

571479.2

5931088.9

372.1

NQ

CV5

CV23-317

DD

Land

431.9

338

-45

568922.9

5930067.3

395.1

NQ

CV5

CV23-321

DD

Land

252.1

158

-45

569813.6

5930404.2

381.9

NQ

CV5

CV23-325

DD

Water

238.9

158

-47

571440.8

5931045.2

372.2

NQ

CV5

CV23-327

DD

Water

386.0

158

-45

570541.7

5930871.4

372.7

NQ

CV5

CV23-329

DD

Land

277.8

310

-55

569812.8

5930405.2

381.9

NQ

CV5

CV23-331

DD

Land

423.0

158

-45

568415.4

5929988.0

395.9

NQ

CV5

CV23-335

DD

Water

263.0

158

-76

571440.5

5931063.1

372.7

NQ

CV5

CV23-337

DD

Land

427.9

338

-45

569717.2

5930368.0

382.0

NQ

CV5

CV23-338

DD

Water

176.0

158

-45

570761.8

5930850.3

372.9

NQ

CV5

CV23-340

DD

Water

212.0

158

-60

571760.9

5931197.6

372.9

NQ

CV5

CV23-342

DD

Water

212.0

158

-45

570631.7

5930908.8

372.8

NQ

CV5

CV23-344

DD

Land

530.2

158

-65

568415.3

5929988.4

395.9

NQ

CV5

CV23-347

DD

Land

230.0

158

-45

569717.7

5930367.4

382.0

NQ

CV5

CV23-349

DD

Water

133.9

158

-45

571865.8

5931191.5

373.4

NQ

CV5

CV23-352

DD

Land

227.0

158

-45

569626.0

5930335.2

381.7

NQ

CV5

CV23-354

DD

Land

296.0

158

-45

569536.2

5930296.9

381.9

NQ

CV5

CV23-357

DD

Land

328.8

158

-45

568371.0

5929961.8

392.7

NQ

CV5

CV23-359

DD

Land

251.1

158

-45

569443.3

5930256.2

383.8

NQ

CV5

CV23-362

DD

Land

356.1

338

-45

571560.3

5931009.3

373.3

NQ

CV5

CV23-363

DD

Land

218.0

158

-45

569347.1

5930221.6

389.4

NQ

CV5

CV23-364

DD

Land

401.0

158

-65

568370.8

5929962.2

392.6

NQ

CV5

CV24-366

DD

Land

489.4

158

-52

570954.3

5931181.8

376.3

NQ

CV5

CV24-367

DD

Land

459.2

160

-49

571374.2

5931330.7

378.5

NQ

CV5

CV24-368

DD

Land

493.9

158

-50

569790.2

5930721.4

375.2

NQ

CV5

CV24-370

DD

Land

511.8

158

-48

570073.6

5930820.6

381.2

NQ

CV5

CV24-371

DD

Land

561.9

158

-57

571477.3

5931353.1

374.7

NQ

CV5

CV24-372

DD

Land

487.9

158

-45

570218.9

5930863.1

375.2

NQ

CV5

CV24-373

DD

Land

479.2

160

-45

569832.6

5930629.6

373.0

NQ

CV5

CV24-374

DD

Land

470.0

158

-46

570693.3

5931027.8

373.3

NQ

CV5

CV24-375

DD

Land

302.1

158

-45

569251.7

5930186.6

395.0

NQ

CV5

CV24-376

DD

Land

583.7

158

-60

570036.0

5930779.8

377.9

NQ

CV5

CV24-377

DD

Land

451.9

158

-45

569911.5

5930690.1

374.0

NQ

CV5

CV24-378

DD

Land

493.0

158

-47

571569.3

5931385.6

374.0

NQ

CV5

CV24-379

DD

Land

613.9

158

-60

570693.4

5931028.3

373.3

NQ

CV5

CV24-380

DD

Land

559.9

158

-60

570218.9

5930863.3

374.9

NQ

CV5

CV24-381

DD

Land

302.1

158

-45

569160.9

5930149.9

395.0

NQ

CV5

CV24-382

DD

Land

506.0

158

-56

569911.6

5930690.5

373.9

NQ

CV5

CV24-383A

DD

Land

308.0

158

-45

569003.7

5930137.6

396.3

NQ

CV5

CV24-384

DD

Land

545.9

158

-57

569946.9

5930739.3

376.4

NQ

CV5

CV24-385

DD

Land

382.9

158

-45

569148.4

5930308.3

394.3

NQ

CV5

CV24-386

DD

Land

552.6

158

-58

571388.7

5931175.9

376.5

NQ

CV5

CV24-388

DD

Land

515.0

158

-58

571569.1

5931386.1

374.1

NQ

CV5

CV24-389

DD

Land

388.2

158

-45

569443.3

5930367.7

383.5

NQ

CV5

CV24-390

DD

Land

620.0

158

-45

570392.4

5930967.3

379.2

NQ

CV5

CV24-391

DD

Land

341.0

158

-45

569214.2

5930279.5

396.6

NQ

CV5

CV24-392

DD

Land

633.1

165

-58

571841.1

5931393.0

377.3

NQ

CV5

CV24-393

DD

Land

462.3

158

-75

569003.4

5930138.0

396.2

NQ

CV5

CV24-394

DD

Land

575.2

158

-47

571605.9

5931299.3

377.2

NQ

CV5

CV24-395

DD

Land

296.1

158

-45

569280.1

5930256.9

394.0

NQ

CV5

CV24-398

DD

Land

431.0

158

-45

569409.3

5930473.0

374.9

NQ

CV5

CV24-399

DD

Ice

527.0

158

-60

570600.6

5930984.8

372.1

NQ

CV5

CV24-400

DD

Land

551.0

158

-52

571388.7

5931175.6

376.5

NQ

CV5

CV24-401A

DD

Land

626.1

158

-58

572056.2

5931528.9

373.1

NQ

CV5

CV24-402

DD

Land

444.4

158

-75

569280.1

5930257.5

393.9

NQ

CV5

CV24-403

DD

Land

373.9

158

-45

569031.2

5930205.5

393.6

NQ

CV5

CV24-404

DD

Land

668.2

162

-59

571931.0

5931431.7

377.3

NQ

CV5

CV24-405

DD

Land

439.9

158

-60

571659.0

5931300.4

378.4

NQ

CV5

CV24-407

DD

Land

296.0

158

-45

569066.8

5930115.0

394.7

NQ

CV5

CV24-408

DD

Land

410.0

158

-45

569237.8

5930354.0

389.3

NQ

CV5

CV24-409

DD

Land

356.1

158

-45

569542.0

5930406.0

383.7

NQ

CV5

CV24-410

DD

Ice

609.0

158

-47

570507.2

5930955.1

372.0

NQ

CV5

CV24-413

DD

Ice

431.0

158

-62

570940.7

5931079.8

372.1

NQ

CV5

CV24-414

DD

Land

425.0

158

-45

569516.5

5930473.0

383.8

NQ

CV5

CV24-415A

DD

Land

576.4

158

-45

571679.3

5931388.3

374.3

NQ

CV5

CV24-416

DD

Land

334.8

158

-45

569358.6

5930330.1

389.7

NQ

CV5

CV24-418

DD

Ice

624.4

158

-47

570600.7

5930984.1

372.1

NQ

CV5

CV24-419

DD

Land

595.9

165

-45

572117.8

5931509.9

372.8

NQ

CV5

CV24-422

DD

Land

572.8

158

-58

571955.7

5931504.0

373.3

NQ

CV5

CV24-423A

DD

Land

329.0

158

-75

569358.9

5930329.9

389.6

NQ

CV5

CV24-424

DD

Land

389.0

158

-53

569615.3

5930495.5

378.1

NQ

CV5

CV24-426

DD

Ice

587.0

158

-45

571004.5

5931058.8

371.9

NQ

CV5

CV24-428

DD

Ice

543.1

158

-45

570728.4

5930940.4

372.1

NQ

CV5

CV24-430

DD

Land

361.9

158

-45

569187.9

5930215.3

397.6

NQ

CV5

CV24-431

DD

Land

352.9

338

-60

569800.9

5930431.0

379.5

NQ

CV5

CV24-433

DD

Ice

508.9

158

-48

570881.7

5931098.0

372.1

NQ

CV5

CV24-434

DD

Ice

467.8

158

-60

570507.2

5930955.1

372.0

NQ

CV5

CV24-435

DD

Land

502.9

158

-60

572117.8

5931509.9

372.8

NQ

CV5

CV24-437

DD

Land

433.9

158

-55

571679.2

5931388.7

374.3

NQ

CV5

CV24-438

DD

Ice

408.3

158

-48

571812.0

5931329.7

372.0

NQ

CV5

CV24-440

DD

Land

438.5

158

-75

569187.5

5930215.9

397.5

NQ

CV5

CV24-441

DD

Ice

342.2

158

-65

571004.7

5931058.3

372.0

NQ

CV5

CV24-442

DD

Land

299.1

158

-87

569802.0

5930429.6

379.4

NQ

CV5

CV24-443

DD

Ice

383.2

158

-45

570818.0

5930984.2

372.0

NQ

CV5

CV24-445

DD

Ice

295.3

158

-45

571968.9

5931339.0

371.9

NQ

CV5

CV24-447

DD

Land

308.4

130

-55

571152.3

5931101.1

375.1

NQ

CV5

CV24-448

DD

Land

341.9

158

-75

569802.0

5930430.0

379.4

NQ

CV5

CV24-449

DD

Ice

291.8

158

-62

570881.7

5931098.3

372.0

NQ

CV5

CV24-450

DD

Land

299.0

160

-45

569864.8

5930545.1

373.3

NQ

CV5

CV24-451

DD

Ice

503.0

158

-45

571771.2

5931288.6

372.0

NQ

CV5

CV24-452

DD

Land

505.9

145

-50

571679.5

5931388.0

374.3

HQ

CV5

CV24-455

DD

Ice

379.8

158

-45

570909.9

5931018.4

372.0

NQ

CV5

CV24-456

DD

Land

456.9

200

-55

570174.5

5930836.0

378.3

NQ

CV5

CV24-458

DD

Ice

328.0

152

-62

571968.6

5931339.6

371.9

NQ

CV5

CV24-460

DD

Ice

263.0

158

-45

571650.2

5931198.3

372.0

NQ

CV5

CV24-462

DD

Land

299.5

158

-45

569773.4

5930503.0

377.2

NQ

CV5

CV24-463

DD

Land

337.9

158

-45

570612.9

5930686.0

378.8

NQ

CV5

CV24-465

DD

Ice

325.0

158

-48

571877.8

5931300.2

372.1

NQ

CV5

CV24-466

DD

Ice

530.3

338

-45

571841.0

5931124.0

372.0

NQ

CV5

CV24-467

DD

Ice

539.2

158

-45

570782.1

5931075.0

372.3

NQ

CV5

CV24-468

DD

Ice

461.0

158

-46

571695.3

5931217.0

372.0

NQ

CV5

CV24-469

DD

Land

409.9

40

-60

571572.0

5930953.4

373.2

NQ

CV5

CV24-472

DD

Land

355.9

338

-45

570503.6

5930694.8

379.8

NQ

CV5

CV24-473

DD

Ice

359.0

153

-58

571514.3

5931262.1

371.9

NQ

CV5

CV24-474

DD

Land

223.9

159

-46

569207.2

5930170.9

396.0

NQ

CV5

CV24-475

DD

Ice

280.1

158

-45

572062.4

5931376.6

371.9

NQ

CV5

CV24-476

DD

Land

557.0

154

-55

570170.7

5930834.1

378.4

NQ

CV5

CV24-479

DD

Land

467.1

16

-55

570355.0

5930476.9

379.2

NQ

CV5

CV24-480

DD

Land

560.3

158

-65

571994.4

5931554.1

372.2

NQ

CV5

CV24-481

DD

Land

272.3

157

-46

569311.2

5930294.6

391.0

NQ

CV5

CV24-482

DD

Ice

305.0

158

-55

572062.4

5931376.0

371.9

NQ

CV5

CV24-485

DD

Ice

365.0

150

-45

571515.2

5931261.4

371.9

NQ

CV5

CV24-486

DD

Ice

299.0

156

-45

571551.6

5931169.2

372.0

NQ

CV5

CV24-488

DD

Land

197.0

160

-45

569373.9

5930278.5

390.3

NQ

CV5

CV24-489

DD

Land

356.0

158

-45

570204.3

5930636.1

382.0

NQ

CV5

CV24-490

DD

Ice

314.3

158

-47

572155.1

5931412.9

372.1

NQ

CV5

CV24-493

DD

Land

218.1

160

-45

569649.4

5930384.4

381.0

NQ

CV5

CV24-494

DD

Land

439.9

158

-60

570227.9

5930714.7

374.8

NQ

CV5

CV24-495

DD

Ice

230.3

158

-45

571803.4

5931216.2

372.0

NQ

CV5

CV24-496

DD

Land

509.0

113

-55

571529.1

5931440.2

390.7

NQ

CV5

CV24-500

DD

Land

512.1

158

-65

571932.1

5931649.5

378.7

NQ

CV5

CV24-501A

DD

Land

403.2

155

-49

572023.6

5931471.2

374.6

NQ

CV5

CV24-502

DD

Land

476.5

145

-52

570360.1

5930766.7

374.0

NQ

CV5

CV24-503

DD

Land

533.1

160

-45

570305.6

5930884.3

372.1

NQ

CV5

CV24-504

DD

Land

302.4

158

-45

570181.3

5930561.3

385.0

NQ

CV5

CV24-505

DD

Land

581.0

158

-58

569994.1

5930753.1

376.5

NQ

CV5

CV24-509

DD

Land

425.4

157

-53

570262.4

5930743.7

373.9

NQ

CV5

CV24-512

DD

Land

317.0

158

-46

570054.0

5930596.6

376.9

NQ

CV5

CV24-514

DD

Land

601.3

158

-50

570459.7

5931100.8

378.2

NQ

CV5

CV24-515

DD

Ice

424.4

160

-58

572240.8

5931602.7

371.8

NQ

CV5

CV24-516

DD

Land

517.9

170

-45

572564.5

5931732.2

375.0

NQ

CV5

CV24-517

DD

Land

428.1

152

-56

570402.3

5930773.8

374.1

NQ

CV5

CV24-521

DD

Land

504.1

158

-45

568928.0

5930328.5

377.9

NQ

CV5

CV24-522

DD

Land

260.2

159

-45

570073.4

5930544.4

379.3

NQ

CV5

CV24-526

DD

Land

442.9

158

-45

569994.4

5930752.6

376.4

NQ

CV5












CH22-001

CH

Land

2.1

342

-7

571342.6

5930847.1

378.4

n/a

CV5

CH22-002

CH

Land

3.9

165

-31

571340.7

5930846.3

378.5

n/a

CV5

CH22-003

CH

Land

1.9

346

-6

571377.5

5930850.9

377.9

n/a

CV5

CH22-007

CH

Land

7.3

340

-30

570151.2

5930541.4

385.3

n/a

CV5

CV1-CH01

CH

Land

8.0

0

0

571477.3

5931121.0

373.4

n/a

CV5

CV1-CH02

CH

Land

6.0

0

0

571393.9

5931098.8

381.9

n/a

CV5

CV1-CH03

CH

Land

11.0

0

0

571381.0

5931103.9

382.2

n/a

CV5

CV1-CH04

CH

Land

4.0

0

0

571340.5

5931110.5

381.2

n/a

CV5

CV1-CH05

CH

Land

11.0

0

0

571435.1

5931107.2

380.6

n/a

CV5

CV2-CH01

CH

Land

4.0

338

0

571299.6

5931156.1

379.6

n/a

CV5

CV2-CH02

CH

Land

4.0

355

0

571274.9

5931156.7

380.0

n/a

CV5

(1) Coordinate system NAD83 / UTM zone 18N; (2) DD = diamond drill, CH = channel; (3) DD azimuths and dips presented are those 'planned' and may vary off collar/downhole

Table 5: Attributes for drill holes and channels included in the Shaakichiuwaanaan MRE (CV13).

Hole ID

Hole 
Type 

Substrate 

Total Depth 
(m) 

Azimuth 
(°) 

Dip 
(°) 

Easting

Northing

Elevation 
(m) 

Core Size 

Pegmatite 

CV22-077

DD

Land

209.0

200

-45

564974.5

5927821.5

390.9

NQ

CV13

CV22-081

DD

Land

50.0

200

-80

564974.4

5927822.2

390.9

NQ

CV13

CV22-082

DD

Land

186.7

200

-45

565010.2

5927856.7

398.5

NQ

CV13

CV22-084

DD

Land

247.8

200

-80

565010.3

5927857.6

398.5

NQ

CV13

CV22-085

DD

Land

201.1

200

-45

565050.0

5927857.9

399.2

NQ

CV13

CV22-088

DD

Land

185.0

140

-45

565052.8

5927858.4

399.0

NQ

CV13

CV22-091

DD

Land

200.0

135

-45

565249.5

5928035.3

429.6

NQ

CV13

CV22-092

DD

Land

260.0

145

-45

565267.4

5928079.4

434.6

NQ

CV13

CV22-095

DD

Land

58.9

145

-65

565266.9

5928080.0

434.7

NQ

CV13

CV22-096

DD

Land

218.0

140

-45

565731.7

5928451.9

386.0

NQ

CV13

CV22-099

DD

Land

248.1

140

-45

565795.5

5928473.1

382.7

NQ

CV13

CV22-101

DD

Land

245.1

140

-65

565795.1

5928473.5

382.7

NQ

CV13

CV22-103

DD

Land

269.0

200

-45

564406.1

5927962.1

403.8

NQ

CV13

CV22-104

DD

Land

68.0

200

-65

564406.1

5927962.5

403.7

NQ

CV13

CV23-191

DD

Land

308.2

170

-45

565125.9

5928034.9

432.4

NQ

CV13

CV23-195

DD

Land

308.0

0

-90

565125.7

5928035.6

432.3

NQ

CV13

CV23-198

DD

Land

98.0

140

-80

565126.2

5928036.0

432.4

NQ

CV13

CV23-200

DD

Land

250.9

100

-45

565128.0

5928036.2

432.4

NQ

CV13

CV23-202

DD

Land

302.0

220

-45

565054.8

5927953.3

419.4

NQ

CV13

CV23-204

DD

Land

262.9

130

-80

565057.6

5927954.3

419.2

NQ

CV13

CV23-207

DD

Land

278.0

140

-45

565058.1

5927953.0

419.0

NQ

CV13

CV23-210

DD

Land

272.0

210

-55

564875.9

5927914.8

409.7

NQ

CV13

CV23-213

DD

Land

209.0

200

-85

564876.6

5927915.3

409.7

NQ

CV13

CV23-215

DD

Land

215.0

150

-45

564878.4

5927914.4

409.5

NQ

CV13

CV23-216

DD

Land

209.1

200

-75

564841.1

5927978.0

415.4

NQ

CV13

CV23-218

DD

Land

254.1

200

-45

564841.3

5927978.6

415.4

NQ

CV13

CV23-221

DD

Land

218.0

0

-90

564841.4

5927979.0

415.3

NQ

CV13

CV23-224

DD

Land

308.0

200

-45

564748.9

5928008.0

414.1

NQ

CV13

CV23-227

DD

Land

237.5

200

-75

564749.1

5928009.1

414.2

NQ

CV13

CV23-229

DD

Land

254.1

200

-75

564657.3

5928047.4

412.2

NQ

CV13

CV23-233

DD

Land

179.0

200

-75

564561.0

5928082.7

411.1

NQ

CV13

CV23-235

DD

Land

203.2

200

-45

564560.9

5928082.2

411.0

NQ

CV13

CV23-238

DD

Land

176.2

200

-45

564466.0

5928113.6

409.4

NQ

CV13

CV23-242

DD

Land

161.0

200

-75

564466.5

5928114.2

409.4

NQ

CV13

CV23-245A

DD

Land

142.9

200

-45

564339.9

5928050.1

405.0

NQ

CV13

CV23-249

DD

Land

224.0

160

-45

564934.8

5927940.8

417.2

NQ

CV13

CV23-250

DD

Land

116.0

200

-85

564340.5

5928051.4

405.0

NQ

CV13

CV23-253

DD

Land

161.1

200

-45

564619.1

5927947.5

402.2

NQ

CV13

CV23-255

DD

Land

131.2

80

-45

564936.2

5927944.4

417.7

NQ

CV13

CV23-257

DD

Land

161.0

200

-85

564619.4

5927948.4

402.2

NQ

CV13

CV23-258

DD

Land

296.0

0

-90

564935.3

5927944.3

417.6

NQ

CV13

CV23-263

DD

Land

86.0

200

-45

564434.5

5928018.3

401.2

NQ

CV13

CV23-266

DD

Land

127.9

300

-65

565064.9

5928000.9

429.2

NQ

CV13

CV23-269

DD

Land

83.0

200

-85

564434.9

5928019.4

401.6

NQ

CV13

CV23-270

DD

Land

119.0

200

-45

564527.9

5927979.6

404.0

NQ

CV13

CV23-271

DD

Land

149.2

110

-75

565068.5

5927999.1

429.0

NQ

CV13

CV23-276

DD

Land

182.0

140

-45

565180.4

5928160.3

441.7

NQ

CV13

CV23-277

DD

Land

287.0

200

-85

564528.6

5927980.6

404.1

NQ

CV13

CV23-280

DD

Land

209.0

200

-45

565178.1

5928159.7

441.5

NQ

CV13

CV23-282

DD

Land

184.9

70

-45

565181.4

5928163.8

441.8

NQ

CV13

CV23-286

DD

Land

95.0

200

-45

564804.5

5927873.3

402.3

NQ

CV13

CV23-288

DD

Land

314.0

0

-90

565180.8

5928163.4

441.8

NQ

CV13

CV23-293

DD

Land

133.9

140

-45

565325.0

5928117.9

430.8

NQ

CV13

CV23-294

DD

Land

170.2

200

-85

564804.9

5927874.2

402.3

NQ

CV13

CV23-299

DD

Land

113.1

0

-90

565324.1

5928118.8

430.9

NQ

CV13

CV23-300

DD

Land

146.2

200

-45

564715.7

5927915.2

404.2

NQ

CV13

CV23-301

DD

Land

113.0

140

-45

565359.3

5928206.8

435.5

NQ

CV13

CV23-302

DD

Land

125.0

200

-85

564716.3

5927916.3

404.2

NQ

CV13

CV23-305

DD

Land

149.0

200

-60

564373.9

5928148.8

408.0

NQ

CV13

CV23-306

DD

Land

209.0

140

-90

565358.6

5928207.5

435.6

NQ

CV13

CV23-309

DD

Land

79.9

200

-45

564244.9

5928082.6

404.2

NQ

CV13

CV23-311

DD

Land

421.9

140

-45

565394.5

5928309.7

414.3

NQ

CV13

CV23-312

DD

Land

149.0

200

-90

564373.8

5928148.9

408.1

NQ

CV13

CV23-316

DD

Land

164.0

200

-60

564278.9

5928174.3

406.9

NQ

CV13

CV23-318

DD

Land

98.0

200

-90

564245.2

5928083.3

404.0

NQ

CV13

CV23-319

DD

Land

149.1

200

-45

564147.1

5928113.7

400.9

NQ

CV13

CV23-320

DD

Land

176.1

200

-90

564279.1

5928174.7

406.9

NQ

CV13

CV23-322

DD

Land

404.1

140

-90

565393.9

5928310.4

414.9

NQ

CV13

CV23-323

DD

Land

143.0

200

-60

564180.4

5928212.8

411.6

NQ

CV13

CV23-324

DD

Land

197.2

200

-90

564147.4

5928114.3

400.9

NQ

CV13

CV23-328

DD

Land

432.0

200

-45

564057.2

5928154.3

403.9

NQ

CV13

CV23-330

DD

Land

215.1

200

-90

564180.7

5928213.2

412.1

NQ

CV13

CV23-332

DD

Land

427.9

140

-45

565421.2

5928393.4

405.5

NQ

CV13

CV23-336

DD

Land

149.0

200

-60

564091.2

5928247.1

412.0

NQ

CV13

CV23-339

DD

Land

158.1

200

-90

564091.5

5928247.4

412.4

NQ

CV13

CV23-343

DD

Land

194.2

200

-60

564000.8

5928282.3

408.5

NQ

CV13

CV23-346

DD

Land

164.1

200

-90

564057.4

5928154.8

403.8

NQ

CV13

CV23-348

DD

Land

386.0

140

-90

565420.9

5928393.8

405.3

NQ

CV13

CV23-350

DD

Land

104.0

200

-45

563965.0

5928183.6

406.1

NQ

CV13

CV23-351

DD

Land

164.1

200

-90

564000.9

5928282.6

408.4

NQ

CV13

CV23-353

DD

Land

137.9

200

-90

563965.1

5928184.3

406.1

NQ

CV13

CV23-355

DD

Land

245.0

200

-45

563865.2

5928215.9

401.4

NQ

CV13

CV23-356

DD

Land

180.7

200

-60

563906.9

5928314.1

400.8

NQ

CV13

CV23-358

DD

Land

311.2

140

-45

565552.3

5928455.0

394.9

NQ

CV13

CV23-360

DD

Land

140.0

200

-90

563865.5

5928216.7

401.4

NQ

CV13

CV23-361

DD

Land

208.8

200

-90

563907.1

5928314.9

400.7

NQ

CV13

CV23-365

DD

Land

322.9

140

-90

565551.9

5928455.4

394.9

NQ

CV13

CV24-396

DD

Land

357.1

140

-65

565052.7

5928112.1

434.0

NQ

CV13

CV24-397

DD

Land

428.0

140

-45

565424.4

5928248.6

421.7

NQ

CV13

CV24-406

DD

Land

128.0

70

-55

565054.1

5928112.6

434.1

NQ

CV13

CV24-411

DD

Land

356.1

310

-70

565055.0

5928114.7

434.1

NQ

CV13

CV24-412

DD

Land

348.4

140

-90

565423.8

5928249.4

421.5

NQ

CV13

CV24-417

DD

Land

196.9

20

-45

565058.0

5928116.1

434.3

NQ

CV13

CV24-420

DD

Land

305.0

200

-60

564988.6

5928082.2

429.5

NQ

CV13

CV24-421

DD

Land

475.9

140

-45

565433.9

5928165.4

416.5

NQ

CV13

CV24-425

DD

Land

209.0

200

-90

564988.8

5928082.7

429.4

NQ

CV13

CV24-427

DD

Land

331.6

200

-60

564895.7

5928116.7

426.4

NQ

CV13

CV24-429

DD

Land

515.2

140

-65

565433.8

5928165.9

416.3

NQ

CV13

CV24-432

DD

Land

278.0

200

-90

564895.9

5928117.1

426.3

NQ

CV13

CV24-436

DD

Land

220.9

200

-60

564799.1

5928146.2

422.6

NQ

CV13

CV24-439

DD

Land

326.5

140

-45

565515.1

5928210.6

412.7

NQ

CV13

CV24-444

DD

Land

248.0

200

-90

564799.0

5928146.2

422.6

NQ

CV13

CV24-446

DD

Land

286.6

140

-90

565514.5

5928211.3

412.6

NQ

CV13

CV24-453

DD

Land

160.9

140

-45

565199.0

5927986.7

422.8

NQ

CV13

CV24-454

DD

Land

209.0

200

-60

564708.5

5928185.6

421.7

NQ

CV13

CV24-457

DD

Land

143.0

140

-45

565145.6

5927920.0

407.6

NQ

CV13

CV24-461

DD

Land

345.7

140

-45

565434.8

5928491.5

394.0

NQ

CV13

CV24-464

DD

Land

262.9

200

-90

564708.7

5928186.2

421.6

NQ

CV13

CV24-470

DD

Land

281.3

320

-80

565430.9

5928494.3

393.9

NQ

CV13

CV24-471

DD

Land

212.1

200

-60

564613.7

5928220.3

420.4

NQ

CV13

CV24-477

DD

Land

332.1

140

-45

565529.8

5928379.0

399.3

NQ

CV13

CV24-478

DD

Land

248.0

200

-90

564613.9

5928220.6

420.3

NQ

CV13

CV24-483

DD

Land

185.0

200

-60

564518.5

5928253.3

414.9

NQ

CV13

CV24-484

DD

Land

263.2

140

-45

565645.4

5928423.4

392.3

NQ

CV13

CV24-487

DD

Land

308.1

140

-45

565807.6

5928565.2

378.9

NQ

CV13

CV24-491

DD

Land

248.0

200

-90

564518.7

5928253.8

415.0

NQ

CV13

CV24-492

DD

Land

290.4

140

-45

565697.4

5928512.1

385.7

NQ

CV13

CV24-497

DD

Land

230.0

200

-60

564427.0

5928280.4

409.6

NQ

CV13

CV24-498

DD

Land

218.0

140

-45

565467.1

5928559.6

387.9

NQ

CV13

CV24-499

DD

Land

176.2

320

-55

565803.9

5928569.8

379.0

NQ

CV13

CV24-506

DD

Land

218.2

200

-90

564427.3

5928280.9

409.6

NQ

CV13

CV24-507

DD

Land

187.0

0

-90

565466.6

5928560.1

387.7

NQ

CV13

CV24-508

DD

Land

152.0

140

-45

565710.4

5928599.6

382.2

NQ

CV13

CV24-510

DD

Land

239.0

270

-55

565458.5

5928561.1

387.8

NQ

CV13

CV24-511

DD

Land

200.0

200

-60

564329.6

5928311.9

413.2

NQ

CV13

CV24-513

DD

Land

171.2

320

-75

565707.2

5928604.4

381.9

NQ

CV13

CV24-518

DD

Land

199.9

200

-90

564329.8

5928312.3

413.2

NQ

CV13

CV24-519

DD

Land

248.0

140

-45

565599.7

5928537.4

385.4

NQ

CV13

CV24-520

DD

Land

243.7

320

-60

565459.7

5928564.3

387.4

NQ

CV13

CV24-523

DD

Land

203.2

200

-60

564237.2

5928354.7

414.2

NQ

CV13

CV24-524

DD

Land

209.0

20

-60

565464.9

5928560.5

387.7

NQ

CV13

CV24-525

DD

Land

161.0

320

-75

565596.8

5928540.8

385.1

NQ

CV13












CH22-008

CH

Land

3.04

134

-10

565327.4

5927991.9

412.9

n/a

CV13

CH22-009

CH

Land

3.46

314

-20

565327.4

5927991.9

412.9

n/a

CV13

CH22-010

CH

Land

5.24

341

-20

565319.8

5927982.1

412.8

n/a

CV13

CH22-011

CH

Land

1.49

164

-7

565290.2

5927974.0

411.6

n/a

CV13

CH22-012

CH

Land

5.31

344

-18

565290.2

5927974.0

411.6

n/a

CV13

CH22-013

CH

Land

2.47

168

-13

565276.5

5927969.0

409.5

n/a

CV13

CH22-014

CH

Land

2.77

348

-10

565276.5

5927969.0

409.5

n/a

CV13

CH22-015

CH

Land

1.3

151

-20

565261.4

5927948.5

406.3

n/a

CV13

CH22-016

CH

Land

0.8

331

-5

565261.4

5927948.5

406.3

n/a

CV13

CH22-017

CH

Land

13.1

161

-15

565008.4

5927781.9

396.5

n/a

CV13

CH22-018

CH

Land

1.63

7

-5

564999.3

5927781.8

397.9

n/a

CV13

CH22-019

CH

Land

8.87

187

-10

564999.3

5927781.8

397.9

n/a

CV13

CH22-020

CH

Land

3.49

1

-10

564958.2

5927787.0

398.7

n/a

CV13

CH22-021

CH

Land

3.57

181

-10

564958.2

5927787.0

398.7

n/a

CV13

CH22-022

CH

Land

8.42

14

-15

564933.1

5927793.5

397.7

n/a

CV13

CH22-023

CH

Land

2.96

356

-30

564859.2

5927784.0

392.7

n/a

CV13

CH22-024

CH

Land

5.81

176

-10

564859.2

5927784.0

392.7

n/a

CV13

CH22-025

CH

Land

4.93

185

-20

563820.5

5928027.6

401.3

n/a

CV13

CH22-026

CH

Land

9.22

15

-20

563820.5

5928027.6

401.3

n/a

CV13

CH22-027

CH

Land

3.5

2

-10

564543.7

5927827.8

394.5

n/a

CV13

CH22-028

CH

Land

1.63

182

-25

564543.7

5927827.8

394.5

n/a

CV13

CH22-029

CH

Land

3.77

344

-8

564430.7

5927891.8

400.2

n/a

CV13

CH22-030

CH

Land

1.09

164

-25

564430.7

5927891.8

400.2

n/a

CV13

CH22-031

CH

Land

3.14

340

-20

564313.4

5927935.4

402.1

n/a

CV13

CH22-032

CH

Land

1.2

160

-5

564313.4

5927935.4

402.1

n/a

CV13

CH22-033

CH

Land

1.73

349

-15

564317.7

5927922.5

403.6

n/a

CV13

CH22-034

CH

Land

1.46

169

-25

564317.7

5927922.5

403.6

n/a

CV13

CH22-035

CH

Land

1.62

166

-10

564318.2

5927920.4

403.4

n/a

CV13

CH22-036

CH

Land

9.27

340

-10

564229.2

5927961.3

403.6

n/a

CV13

CH22-037

CH

Land

4.82

160

-5

564229.2

5927961.3

403.6

n/a

CV13

CH23-058

CH

Land

6.73

200

-20

564428.8

5927877.0

397.6

n/a

CV13

CH23-059

CH

Land

16.7

185

-25

564395.4

5927899.8

401.0

n/a

CV13

CH23-060

CH

Land

5.11

200

-10

564381.8

5927886.9

398.6

n/a

CV13

CH23-061

CH

Land

13.41

200

-15

564356.1

5927920.0

402.7

n/a

CV13

CH23-062

CH

Land

14.86

180

-15

565813.8

5928472.6

379.6

n/a

CV13

CH23-063

CH

Land

8.47

180

-21

565793.4

5928462.2

380.7

n/a

CV13

CH23-064

CH

Land

13.9

160

-15

565774.8

5928454.4

382.6

n/a

CV13

CH23-065

CH

Land

27.92

180

-15

565757.6

5928430.0

384.6

n/a

CV13

CH23-066

CH

Land

11.93

180

-10

565743.4

5928420.7

386.2

n/a

CV13

CH23-067

CH

Land

4.52

180

-15

565668.3

5928403.0

390.8

n/a

CV13

CH23-068

CH

Land

6.21

148

-18

565459.7

5928331.7

404.0

n/a

CV13

CH23-069

CH

Land

6.77

26

-36

565393.2

5928283.7

418.1

n/a

CV13

CH23-070

CH

Land

3.66

5

-5

565414.5

5928118.5

414.7

n/a

CV13

CH23-071

CH

Land

6.43

160

-25

565358.5

5928074.7

415.8

n/a

CV13

CH24-072

CH

Land

1.71

2

-5

563770.0

5928053.0

394.0

n/a

CV13

CH24-073

CH

Land

6.32

5

-2

563798.0

5928046.0

394.0

n/a

CV13

CH24-074

CH

Land

5.92

192

0

563809.0

5928065.0

398.0

n/a

CV13

CH24-075

CH

Land

9.14

193

0

563872.0

5928036.0

390.0

n/a

CV13

CH24-076

CH

Land

14.98

194

-5

563868.0

5928029.0

397.0

n/a

CV13

CH24-077

CH

Land

1.82

206

-40

563952.0

5928001.0

385.0

n/a

CV13

CH24-078

CH

Land

5.62

183

-19

564022.0

5927996.0

384.0

n/a

CV13

CH24-079

CH

Land

10.98

194

-5

564098.0

5927988.0

401.0

n/a

CV13

CH24-080

CH

Land

8.9

189

0

564206.0

5927971.0

397.0

n/a

CV13

CH24-081

CH

Land

6.4

208

-2

564245.0

5927965.0

396.0

n/a

CV13

(1) Coordinate system NAD83 / UTM zone 18N; (2) DD = diamond drill, CH = channel; (3) DD azimuths and dips presented are those 'planned' and may vary off collar/downhole.

APPENDIX 1 – JORC CODE 2012 TABLE 1 (ASX LISTING RULE 5.8.2)

Section 1 – Sampling Techniques and Data

Criteria

JORC Code explanation

Commentary

Sampling techniques

•  Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.

•  Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

•  Aspects of the determination of mineralization that are Material to the Public Report.

•  In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverized to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralization types (eg submarine nodules) may warrant disclosure of detailed information.

•  Core sampling protocols meet industry standard practices.

•  Core sampling is guided by lithology as determined during geological logging (i.e., by a geologist). All pegmatite intervals are sampled in their entirety (half-core), regardless if spodumene mineralization is noted or not (in order to ensure an unbiased sampling approach) in addition to ~1 to 3 m of sampling into the adjacent host rock (dependent on pegmatite interval length) to "bookend" the sampled pegmatite.

•  The minimum individual core sample length is typically 0.3 to 0.5 m and the maximum sample length is typically 2.0 m. Targeted individual pegmatite sample lengths are 1.0 to 1.5 m.

•  All drill core is oriented to maximum foliation prior to logging and sampling and is cut with a core saw into half-core pieces, with one half-core collected for assay, and the other half-core remaining in the box for reference.

•  Core samples collected from 2021 drill holes were shipped to Activation Laboratories in Ancaster, ON, for standard sample preparation (code RX1) which included crushing to 80% passing 10 mesh, followed by a 250 g riffle split and pulverizing to 95% passing 105 microns. All 2021 core sample pulps were analyzed, at the same lab, for multi-element (including lithium) by four-acid digestion with ICP-OES finish (package 1F2) and tantalum by INAA (code 5B), with any samples returning >8,000 ppm Li by 1F2 reanalyzed for Li by code 8-4 Acid ICP Assay.

•  Core samples collected from 2022 and 2023 drill holes CV22-015 through CV23-107 were shipped to SGS Canada's laboratory in either Lakefield, ON (vast majority), Sudbury, ON (CV22-028, 029, 030), or Burnaby, BC (CV22-031, 032, 033, and 034), for standard sample preparation (code PRP89) which included drying at 105°C, crush to 75% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. Core samples collected from 2023 drill holes CV23-108 through 365 were shipped to SGS Canada's laboratory in Val-d'Or, QC, for standard sample preparation (code PRP89).

•  Core samples collected from 2024 drill holes were shipped to SGS Canada's laboratory in Val-d'Or, QC, or Radisson, QC, for sample preparation (code PRP90 special) which included drying at 105°C, crush to 90% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns.

•  All drill core sample pulps from 2022, 2023, and 2024 were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50).

•  Channel sampling followed best industry practices with a 3 to 5 cm wide, saw-cut channel completed across the pegmatite outcrop as practical, perpendicular to the interpreted pegmatite strike. Samples were collected at ~1 m contiguous intervals with the channel bearing noted, and GPS coordinate collected at the start and end points of the channel.

•  All channel samples collected were shipped to SGS Canada's laboratory in Lakefield, ON, or Val-d'Or, QC, for standard preparation. Pulps were analyzed at SGS Canada's laboratory in either Lakefield, ON, (2017), or Burnaby, BC (2022, 2023, and 2024), for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish.

Drilling techniques

•  Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).

•  NQ or HQ size core diamond drilling was completed for all holes. Core was not oriented. However, downhole OTV-ATV surveys were completed to various depths multiple holes to assess overall structure.

•  The quality of the channel sampling allowed the channels to be treated as horizontal drill holes for the purposes of modelling and resource estimation.

Drill sample
recovery

•  Method of recording and assessing core and chip sample recoveries and results assessed.

•  Measures taken to maximize sample recovery and ensure representative nature of the samples.

•  Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

•  All drill core was geotechnically logged following industry standard practices, and include TCR, RQD, ISRM, and Q-Method (since mid-winter 2023). Core recovery is very good and typically exceeds 90%.

•  Channel samples were not geotechnically logged. Channel recovery was effectively 100%.

Logging

•  Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

•  Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.

•  The total length and percentage of the relevant intersections logged.

•  Upon receipt at the core shack, all drill core is pieced together, oriented to maximum foliation, metre marked, geotechnically logged (including structure), alteration logged, geologically logged, and sample logged on an individual sample basis. Core box photos are also collected of all core drilled, regardless of perceived mineralization. Specific gravity measurements of pegmatite are also collected at systematic intervals for all pegmatite drill core using the water immersion method, as well as select host rock drill core.

•  Channel samples were geologically logged upon collection on an individual sample basis.

•  The logging is qualitative by nature, and includes estimates of spodumene grain size, inclusions, and model mineral estimates.

•  These logging practices meet or exceed current industry standard practices.

Sub-sampling
techniques and
sample preparation

•  If core, whether cut or sawn and whether quarter, half or all core taken.

•  If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.

•  For all sample types, the nature, quality and appropriateness of the sample preparation technique.

•  Quality control procedures adopted for all sub-sampling stages to maximize representivity of samples.

•  Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.

•  Whether sample sizes are appropriate to the grain size of the material being sampled.

•  Drill core sampling follows industry best practices. Drill core was saw-cut with half-core sent for geochemical analysis and half-core remaining in the box for reference. The same side of the core was sampled to maintain representativeness.

•  Channels were saw-cut with the full channel being sent for analysis at ~1 m sample intervals.

•  Sample sizes are considered appropriate for the material being assayed.

•  A Quality Assurance / Quality Control (QAQC) protocol following industry best practices was incorporated into the drill programs and included systematic insertion of quartz blanks and certified reference materials into sample batches, as well as collection of quarter-core duplicates (through hole CV23-190 only), at a rate of approximately 5% each. Additionally, analysis of pulp-split and coarse-split (through hole CV23-365 only) sample duplicates were completed to assess analytical precision at different stages of the laboratory preparation process, and external (secondary) laboratory pulp-split duplicates were prepared at the primary lab for subsequent check analysis and validation at a secondary lab (SGS Canada in 2021, and ALS Canada in 2022, 2023, and 2024). All protocols employed are considered appropriate for the sample type and nature of mineralization and are considered the optimal approach for maintaining representativeness in sampling.

Quality of assay
data and laboratory
tests

•  The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

•  For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

•  Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

•  Core samples collected from 2021 drill holes were shipped to Activation Laboratories in Ancaster, ON, for standard sample preparation (code RX1) which included crushing to 80% passing 10 mesh, followed by a 250 g riffle split and pulverizing to 95% passing 105 microns. All 2021 core sample pulps were analyzed, at the same lab, for multi-element (including lithium) by four-acid digestion with ICP-OES finish (package 1F2) and tantalum by INAA (code 5B), with any samples returning >8,000 ppm Li by 1F2 reanalyzed for Li by code 8-4 Acid ICP Assay.

•  Core samples collected from 2022 and 2023 drill holes CV22-015 through CV23-107 were shipped to SGS Canada's laboratory in either Lakefield, ON (vast majority), Sudbury, ON (CV22-028, 029, 030), or Burnaby, BC (CV22-031, 032, 033, and 034), for standard sample preparation (code PRP89) which included drying at 105°C, crush to 75% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns. Core samples collected from 2023 drill holes CV23-108 through 365 were shipped to SGS Canada's laboratory in Val-d'Or, QC, for standard sample preparation (code PRP89).

•  Core samples collected from 2024 drill holes were shipped to SGS Canada's laboratory in Val-d'Or, QC, or Radisson, QC, for sample preparation (code PRP90 special) which included drying at 105°C, crush to 90% passing 2 mm, riffle split 250 g, and pulverize 85% passing 75 microns.

•  All drill core sample pulps from 2022, 2023, and 2024 were shipped by air to SGS Canada's laboratory in Burnaby, BC, where the samples were homogenized and subsequently analyzed for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish (codes GE_ICP91A50 and GE_IMS91A50).

•  All channel samples collected were shipped to SGS Canada's laboratory in Lakefield, ON, or Val-d'Or, QC, for standard preparation. Pulps were analyzed at SGS Canada's laboratory in either Lakefield, ON, (2017), or Burnaby, BC (2022, 2023, and 2024), for multi-element (including Li and Ta) using sodium peroxide fusion with ICP-AES/MS finish.

•  The Company relies on both its internal QAQC protocols (systematic use of blanks, certified reference materials, and external checks), as well as the laboratory's internal QAQC.

•  All protocols employed are considered appropriate for the sample type and nature of mineralization and are considered the optimal approach for maintaining representativeness in sampling.

Verification of
sampling and
assaying

•  The verification of significant intersections by either independent or alternative company personnel.

•  The use of twinned holes.

•  Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.

•  Discuss any adjustment to assay data.

•  Intervals are reviewed and compiled by the VP Exploration and Project Managers prior to disclosure, including a review of the Company's internal QAQC sample analytical data.

•  No twinned holes were completed, apart from several holes being recollared with a different core size or due to premature loss of a hole due to conditions.

•  Data capture utilizes MX Deposit software whereby core logging data is entered directly into the software for storage, including direct import of laboratory analytical certificates as they are received. The Company employs various on-site and post QAQC protocols to ensure data integrity and accuracy.

•  Adjustments to data include reporting lithium and tantalum in their oxide forms, as it is reported in elemental form in the assay certificates. Formulas used are Li2O = Li x 2.153, and Ta2O5 = Ta x 1.221.

Location of data
points

•  Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

•  Specification of the grid system used.

•  Quality and adequacy of topographic control.

•  Each drill hole collar and channel end points have been surveyed with a RTK Topcon GR-5 or RTK Trimble Zephyr 3, except for a minor number of channels.  

•  The coordinate system used is UTM NAD83 Zone 18.

•  The Company completed a property-wide LiDAR and orthophoto survey in August 2022, which provides high-quality topographic control.

•  The quality and accuracy of the topographic controls are considered adequate for advanced stage exploration and development, including Mineral Resource estimation.

Data spacing and
distribution

•  Data spacing for reporting of Exploration Results.

•  Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

•  Whether sample compositing has been applied.

•  At CV5, drill hole collar spacing is dominantly grid based. Several collars are typically completed from the same pad at varied orientations targeting pegmatite pierce points of ~50 to 100 m spacing.

•  At CV13, drill hole spacing is a combination of grid based (at ~100 spacing) and fan based with multiple holes collared from the same pad. Therefore, collar locations and hole orientations may vary widely, which reflect the varied orientation of the pegmatite body along strike.

•  Based on the nature of the mineralization and continuity in geological modelling, the drill hole spacing is sufficient to support a Mineral Resource Estimate.

•  Core sample lengths typically range from 0.5 to 2.0 m and average ~1.0 to 1.5 m. Sampling is continuous within all pegmatite encountered in the drill hole.

•  Core samples are not composited upon collection or for analysis.

Orientation of data
in relation to
geological structure

•  Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

•  If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

•  No sampling bias is anticipated based on structure within the mineralized body.

•  The principal mineralized bodies are relatively undeformed and very competent, although have some meaningful structural control.

•  At CV5, the principal mineralized body and adjacent lenses are steeply dipping resulting in oblique angles of intersection with true widths varying based on drill hole angle and orientation of pegmatite at that particular intersection point. i.e., the dip of the mineralized pegmatite body has variations in a vertical sense and along strike, so the true widths are not always apparent until several holes have been drilled (at the appropriate spacing) in any particular drill-fence.

•  At CV13, the principal pegmatite body has a shallow varied strike and northerly dip.

Sample security

•  The measures taken to ensure sample security.

•  Samples were collected by Company staff or its consultants following project specific protocols governing sample collection and handling. Core samples were bagged, placed in large supersacs for added security, palleted, and shipped by third party transport, or directly by representatives of the Company, to the designated sample preparation laboratory (Ancaster, ON, in 2021, Sudbury, ON, Burnaby, BC, and Lakefield, ON, in 2022, Lakefield, ON, in 2023, Val-d'Or, QC, in 2023 and 2024, and Radisson in 2024) being tracked during shipment along with chain of custody documents. Upon arrival at the laboratory, the samples were cross-referenced with the shipping manifest to confirm all samples were accounted for. At the laboratory, sample bags were evaluated for tampering. On several occasions in 2022, SGS Canada shipped samples to a different SGS Canada facility for preparation than was intended by the Company (Sudbury, ON, and Burnaby, BC, in 2022).

Audits or reviews

•  The results of any audits or reviews of sampling techniques and data.

•  A review of the sample procedures for the Company's 2021 fall drill program (CF21-001 to 004) and 2022 winter drill program (CV22-015 to 034) was completed by an Independent Competent Person and deemed adequate and acceptable to industry best practices (discussed in a technical report titled "NI 43-101 Technical Report on the Corvette Property, Quebec, Canada", by Alex Knox, M.Sc., P.Geol., Issue Date of June 27th, 2022.)

•  A review of the sample procedures through the Company's 2023 winter drill program (through CV23-190) was completed by an independent Competent Person with respect to the CV5 Pegmatite's maiden Mineral Resource Estimate and deemed adequate and acceptable to industry best practices (discussed in a technical report titled " NI 43–101 Technical Report, Mineral Resource Estimate for the CV5 Pegmatite, Corvette Property" by Todd McCracken, P.Geo., of BBA Engineering Ltd., and Ryan Cunningham, M.Eng., P.Eng., of Primero Group Americas Inc., Effective Date of June 25, 2023, and Issue Date of September 8, 2023.

•  Additionally, the Company continually reviews and evaluates its procedures in order to optimize and ensure compliance at all levels of sample data collection and handling.

Section 2 – Reporting of Exploration Results

Criteria

JORC Code explanation

Commentary

Mineral tenement
and land tenure
status

•  Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.

•  The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

•  The Shaakichiuwaanaan Property is comprised of 463 CDC claims located in the James Bay Region of Quebec. All claims are registered 100% in the name of Lithium Innova Inc., a wholly owned subsidiary of Patriot Battery Metals Inc.

•  The northern border of the Property's primary claim grouping is located within approximately 6 km to the south of the Trans-Taiga Road and powerline infrastructure corridor. The CV5 Spodumene Pegmatite is situated approximately 13.5 km south of the regional and all–weather Trans-Taiga Road and powerline infrastructure corridor, and is accessible year-round by an all-season road. The CV13 Spodumene Pegmatite is located approximately 3 km west-southwest of CV5.

•  The Company holds 100% interest in the Property subject to various royalty obligations depending on original acquisition agreements. DG Resources Management holds a 2% NSR (no buyback) on 76 claims, D.B.A. Canadian Mining House holds a 2% NSR on 50 claims (half buyback for $2M), Osisko Gold Royalties holds a sliding scale NSR of 1.5-3.5% on precious metals, and 2% on all other products, over 111 claims, and Azimut Exploration holds a 2% NSR on 39 claims.

•  The Property does not overlap any atypically sensitive environmental areas or parks, or historical sites to the knowledge of the Company. There are no known hinderances to operating at the Property, apart from the goose harvesting season (typically mid-April to mid-May) where the communities request helicopter flying not be completed, and potentially wildfires depending on the season, scale, and location.

•  Claim expiry dates range from February 2025 to November 2026. 

Exploration done
by other parties

•  Acknowledgment and appraisal of exploration by other parties.

•  No core assay results from other parties are disclosed herein.

•  The most recent independent Property review was a technical report titled "NI 43-101 Technical Report, Mineral Resource Estimate for the CV5 Pegmatite, Corvette Property, James Bay Region, Québec, Canada", by Todd McCracken, P.Geo., of BBA Engineering Ltd., and Ryan Cunningham, M.Eng., P.Eng., of Primero Group Americas Inc., Effective Date of June 25, 2023, and Issue Date of September 8, 2023.

Geology

•  Deposit type, geological setting and style of mineralization.

•  The Property overlies a large portion of the Lac Guyer Greenstone Belt, considered part of the larger La Grande River Greenstone Belt, and is dominated by volcanic rocks metamorphosed to amphibolite facies. Rocks of the Guyer Group (amphibolite, iron formation, intermediate to mafic volcanics, peridotite, pyroxenite, komatiite, as well as felsic volcanics) predominantly underly the Property. The amphibolite rocks that trend east-west (generally steeply south dipping) through this region are bordered to the north by the Magin Formation (conglomerate and wacke) and to the south by an assemblage of tonalite, granodiorite, and diorite, in addition to metasediments of the Marbot Group (conglomerate, wacke) in the areas proximal to the CV5 Spodumene Pegmatite. Several regional-scale Proterozoic gabbroic dykes also cut through portions of the Property (Lac Spirt Dykes, Senneterre Dykes). The lithium pegmatites on the Property are hosted predominantly within amphibolite's, metasediments, and to a lesser extent ultramafic rocks.

•  The geological setting is prospective for gold, silver, base metals, platinum group elements, and lithium over several different deposit styles including orogenic gold (Au), volcanogenic massive sulfide (Cu, Au, Ag), komatiite-ultramafic (Au, Ag, PGE, Ni, Cu, Co), and pegmatite (Li, Ta).

•  Exploration of the Property has outlined three primary mineral exploration trends crossing dominantly east-west over large portions of the Property – Golden Trend (gold), Maven Trend (copper, gold, silver), and CV Trend (lithium, tantalum). The CV5 and CV13 spodumene pegmatites are situated within the CV Trend. Lithium mineralization at the Property, including at CV5 and CV13 is observed to occur within quartz-feldspar pegmatite, which may be exposed at surface as high relief 'whale-back' landforms. The pegmatite is often very coarse-grained and off-white in appearance, with darker sections commonly composed of mica and smoky quartz, and occasional tourmaline.

•  The lithium pegmatites at Property are categorized as LCT Pegmatites. Core assays and ongoing mineralogical studies, coupled with field mineral identification and assays, indicate spodumene as the dominant lithium-bearing mineral on the Property, with no significant petalite, lepidolite, lithium-phosphate minerals, or apatite present. The pegmatites also carry significant tantalum values with tantalite indicated to be the mineral phase.

Drill hole
Information

•  A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

o  easting and northing of the drill hole collar

o  elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar

o  dip and azimuth of the hole

o  down hole length and interception depth

o  hole length.

•  If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

•  Drill hole attribute information is included in a table herein.

•  Pegmatite intersections of <2 m are not typically presented as they are considered insignificant. 

Data aggregation
methods

•  In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.

•  Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.

•  The assumptions used for any reporting of metal equivalent values should be clearly stated.

•  Length weighted averages were used to calculate grade over width.

•  No specific grade cap or cut-off was used during grade width calculations. The lithium and tantalum length weighted average grade of the entire pegmatite interval is calculated for all pegmatite intervals over 2 m core length, as well as higher grade zones at the discretion of the geologist. Pegmatites have inconsistent mineralization by nature, resulting in some intervals having a small number of poorly mineralized samples included in the calculation. Non-pegmatite internal dilution is limited to typically <3 m where relevant and intervals indicated when assays are reported.

•  No metal equivalents have been reported.

Relationship
between
mineralization
widths and
intercept lengths

•  These relationships are particularly important in the reporting of Exploration Results.

•  If the geometry of the mineralization with respect to the drill hole angle is known, its nature should be reported.

•  If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').

•  At CV5, geological modelling is ongoing on a hole-by-hole basis and as assays are received. However, current interpretation supports a principal, large pegmatite body of near vertical to steeply dipping orientation, flanked by several subordinate pegmatite lenses (collectively, the 'CV5 Spodumene Pegmatite').

•  At CV13, geological modelling is ongoing on a hole-by-hole basis and as assays are received. However, current interpretation supports a series of flat-lying to moderately dipping (northerly), sub-parallel trending spodumene pegmatite bodies, of which three appear to dominate (collectively, the 'CV13 Spodumene Pegmatite').

•  All reported widths are core length. True widths are not calculated for each hole due to the relatively wide drill spacing at this stage of delineation and the typical irregular nature of pegmatite, as well as the varied drill hole orientations. As such, true widths may vary widely from hole to hole.

Diagrams

•  Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.

•  Please refer to the figures included herein as well as those posted on the Company's website.

Balanced reporting

•  Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.

•  Please refer to the table(s) included herein as well as those posted on the Company's website.

•  Results for pegmatite intervals <2 m are not reported as they are considered insignificant.

Other substantive
exploration data

•  Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

•  The Company is currently completing site environmental work over the CV5 and CV13 pegmatite area. No endangered flora or fauna have been documented over the Property to date, and several sites have been identified as potentially suitable for mine infrastructure.

•  The Company has completed a bathymetric survey over the shallow glacial lake which overlies a portion of the CV5 Spodumene Pegmatite. The lake depth ranges from <2 m to approximately 18 m, although the majority of the CV5 Spodumene Pegmatite, as delineated to date, is overlain by typically <2 to 10 m of water.

•  The Company has completed preliminary metallurgical testing comprised of HLS and magnetic testing, which has produced 6+% Li2O spodumene concentrates at >70% recovery on both CV5 and CV13 pegmatite material, indicating DMS as a viable primary process approach, and that both CV5 and CV13 could potentially feed the same process plant. A DMS test on CV5 Spodumene Pegmatite material returned a spodumene concentrate grading 5.8% Li2O at 79% recovery, strongly indicating potential for a DMS only operation to be applicable.

•  Various mandates required for advancing the Project towards economic studies have been initiated, including but not limited to, environmental baseline, metallurgy, geomechanics, hydrogeology, hydrology, stakeholder engagement, geochemical characterization, as well as transportation and logistical studies.

Further work

•  The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).

•  Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

•  The Company intends to continue drilling the pegmatites of the Property, focused on completion of the infill drill program at the CV5 Pegmatite as well as testing for extensions along strike, up dip, and down dip where mineralization remains open. The Company also anticipates further drilling at the CV13 Pegmatite and the CV9 Pegmatite.   

Section 3 – Estimate and Reporting of Mineral Resources

Criteria

JORC Code explanation

Commentary

Database integrity

•  Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.

•  Data validation procedures used.

•  Data capture utilizes MX Deposit database software whereby core logging data is entered directly into the software for storage, including direct import of laboratory analytical certificates as they are received. Collar and downhole deviation surveys are also validated and stored in MX Deposit database software. The Company employs various on-site and post initial QAQC protocols to ensure data integrity and accuracy.

•  Drill hole collar points were validated against LiDAR topographic data.

•  The drill hole database was further validated by the independent Competent Person for the Mineral Resource Estimate, including missing sample intervals, overlapping intervals, and various missing data (survey, collar coordinates, assays, rock type, etc.)

•  All the analytical certificates since the 2023 MRE were validate against the assays present in the database for Li and Ta.

•  No significant errors in the database were discovered. The database is considered validated and of high quality, and therefore sufficient to support the Mineral Resource Estimate.

Site visits

•  Comment on any site visits undertaken by the Competent Person and the outcome of those visits.

•  If no site visits have been undertaken indicate why this is the case.

•  Todd McCracken (Competent Person) of BBA Engineering Ltd., completed site visits to the Property from April 7 to 11, 2023, and June 4 to 7, 2024.

•  Core from various drill holes from CV5 and CV13 from the 2023 and 2024 drill program was viewed and core processing protocols reviewed with site geologists. Drilling was active during the 2023 site visit.

•  Several of the CV5 and CV13 pegmatite outcrops were visited, and various collar locations were visited and GPS coordinates checked against the database.

•  Pulp samples were collected for check analysis from holes selected by the Competent Person. 

•  No significant issues were found with the protocols practiced on site. The Competent Person considers the QAQC and procedures adopted by the Company to be of a high standard. 

 

Geological
interpretation

•  Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.

•  Nature of the data used and of any assumptions made.

•  The effect, if any, of alternative interpretations on Mineral Resource estimation.

•  The use of geology in guiding and controlling Mineral Resource estimation.

•  The factors affecting continuity both of grade and geology.

•  The CV5 and CV13 geological models were built in Leapfrog Geo using MX Deposit database, through an iterative and interpretive process by Project Geologists and VP Exploration, and validated by the Competent Person.

•  The CV5 Pegmatite was geologically modelled as an intrusive for the principal pegmatite body (1), and as a vein for adjacent lenses (8). The CV13 Pegmatite was geological modelled as veins for all of its lenses.

•  A combination of implicit and explicit modelling methods was used, defined by geologically logged drill intersections, channel samples, and outcrop mapping, with external geological controls, including measured contact orientations, cross-sectional polylines, and surface polyline controls to ensure the model follows geological interpretation, validation, and reasonable extensions along trend and dip.

•  The CV5 geological model's principal pegmatite was further geochemically domain modelled using rock types and assays.

•  The geological interpretation of both the CV5 and CV13 geological models are robust. Alternative interpretations are unlikely to materially alter the Mineral Resource Estimate. 

•  Drilling density is the primary factor in assessing the interpreted continuity of both grade and geology. The current drill density is sufficient to support the Mineral Resource Estimate. The controlling factors on mineralization are not fully understood but meaningful structural control is interpreted. 

Dimensions

•  The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.

•  The CV5 portion of the Shaakichiuwaanaan Mineral Resource Estimate includes multiple individual spodumene pegmatite dykes that have been modelled. However, approximately two-thirds of the overall Shaakichiuwaanaan Mineral Resource, and vast majority of the CV5 Mineral Resource component, is hosted within a single, large, principal pegmatite dyke, which is flanked on both sides by multiple, subordinate, sub-parallel trending dykes. The principal dyke at CV5 is geologically modelled to extend continuously over a lateral distance of at least 4.6 km and remains open along strike at both ends and to depth along a large portion of its length. The width of the currently known mineralized corridor at CV5 is approximately 500 m, with spodumene pegmatite intersected as deep as 450 m vertical depth from surface. The pegmatite dykes at CV5 trend south-southwest (approximately 250°/070° RHR), and therefore dip northerly, which is opposite to the host amphibolites, metasediments, and ultramafics which steeply dip southerly. The principal dyke ranges from <10 m to >125 m in true width, and may pinch and swell aggressively along strike, as well as up and down dip. It is primarily the thickest at near-surface to moderate depths (<225 m), forming a relatively bulbous, elongated shape, which may flair to surface and to depth variably along its length.

•  The CV13 portion of the Shaakichiuwaanaan Mineral Resource Estimate includes multiple individual spodumene pegmatite dykes that have been modelled, with three appearing to be dominant. The pegmatite bodies are coincident with the apex of a regional structural flexure where the west arm trends ~290° and the east arm at ~230°. Drilling to date indicates the east arm includes significantly more pegmatite stacking compared to the west, and also carries a significant amount of the overall CV13 Pegmatite tonnage and grade, highlighted by the high-grade Vega Zone.

Estimation and
modelling
techniques

•  The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used.

•  The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data.

•  The assumptions made regarding recovery of by-products.

•  Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation).

•  In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.

•  Any assumptions behind modelling of selective mining units.

•  Any assumptions about correlation between variables.

•  Description of how the geological interpretation was used to control the resource estimates.

•  Discussion of basis for using or not using grade cutting or capping.

•  The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.

•  Compositing was done every 1.0 m. Unsampled intervals were assigned a grade of 0.0005% Li and 0.25 ppm Ta. Capping was done after compositing. Based on the statistical analysis capping varies by lithological domain.

•  On CV5, the spodumene-rich domain within the CV5 principal pegmatite, no capping was required for Li2O but Ta2O5 was capped at 3,000 ppm. For the feldspar-rich domain within the CV5 principal pegmatite, a capping of 3.5% Li2O and 1,500 ppm Ta2O5 was applied. For the parallel dykes a capping of 5% Li2O and 1,200 ppm Ta2O5 was applied.

•  For CV13 zones, it was determined that no capping was required for Li2O, but Ta2O5 was capped at 1,500 ppm.

•  Variography was done both in Leapfrog Edge and Supervisor. For Li2O, a well-structured variogram model was obtained for the CV5 principal pegmatite's spodumene-rich domain. For the CV5 principal pegmatite, both domains (spodumene-rich and feldspar-rich domains) were estimated using ordinary kriging (OK), using Leapfrog Edge. For Ta2O5, the spodumene-rich domain and the feldspar-rich domain within CV5 principal pegmatite did not yield well-structured variograms. Therefore, Ta2O5 was estimated using Inverse Distance Squared (ID2). The remaining pegmatite dykes (8) domains at CV5 did not yield well-structured variograms for either Li2O and Ta2O5 and therefore were estimated using Inverse Distance Squared (ID2), also using Leapfrog Edge.

•  At CV5, three (3) orientated search ellipsoids were used to select data and interpolate Li2O and Ta2O5 grades in successively less restrictive passes. The ellipse sizes and anisotropies were based on the variography, drillhole spacing, and pegmatite geometry. The ellipsoids were 100 m x 50 m x 30 m, 200 m x 100 m x 60 m, and 400 m x 200 m x 120 m. For the first pass interpolation a minimum of five (5) composites and a maximum of twelve (12) composites with a minimum of two (2) holes were needed to interpolate. For the second and third pass a minimum of three (3) composites with a maximum of twelve (12) without a minimum per hole was used. Variable search ellipse orientations (dynamic anisotropy) were used to interpolate for the eight (8) parallel dykes. Spatial anisotropy of the dykes is respected during estimation using Leapfrog Edge's Variable Orientation tool. The search ellipse follows the trend of the central reference plane of each dyke.

•  At CV13, variography analysis did not yield a well-structured variogram. On CV13, Li2O and Ta2O5 were estimated using Inverse Distance Squared (ID2) in Leapfrog Edge.

•  Three (3) orientated search ellipsoids were used to select data and interpolate Li2O and Ta2O5 grades in successively less restrictive passes. The ellipse sizes and anisotropies were based on the variography, drillhole spacing, and pegmatite geometry. The ellipsoids were 80 m x 60 m x 10 m, 160 m x 120 m x 20 m, and 320 m x 240 m x 40 m.  For the first pass interpolation a minimum of five (5) composites and a maximum of twelve (12) composites with a minimum of two (2) holes were needed to interpolate. For the second and third pass a minimum of three (3) composites with a maximum of twelve (12) without a minimum per hole was used. Variable search ellipse orientations (dynamic anisotropy) were used to interpolate the dykes. Spatial anisotropy of the dykes is respected during estimation using Leapfrog Edge's Variable Orientation tool. The search ellipse follows the trend of the central reference plane of each dyke.

•  Parent cells of 10 m x 5 m x 5 m, subblocked four (4) times in each direction (for minimum subcells of 2.5 m in x, 1.25 m in y, and 1.25 m in z were used. Subblocks are triggered by the geological model. Li2O and Ta2O5 grades are estimated on the parent cells and automatically populated to subblocks.

•  The block model is rotated around the Z axis (Leapfrog 340°).

•  Hard boundaries between all the pegmatite domains were used for all Li2O and Ta2O5 estimates.

•  Validation of the block model was performed using Swath Plots, nearest neighbours grade estimates, global means comparisons, and by visual inspection in 3D and along plan views and cross-sections.

 

Moisture

•  Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.

•  Tonnages are reported on a dry basis.

Cut-off parameters

•  The basis of the adopted cut-off grade(s) or quality parameters applied.

•  Open pit adopted cut-off grade is 0.40% Li2O and determined based on operational cost estimates, primarily through benchmarking and an internal trade-off study, for mining ($5.47/t mined for minable resource, waste or overburden, processing ($14.17/t milled), tailings management ($2.62/t milled), G&A ($20.41/t milled), and concentrate transport costs ($287/t mine site to Becancour, QC). Process recovery assumed a Dense Media Separation (DMS) only operation at approximately 70% overall recovery based on processing recovery formula of Recovery % = 75% × (1-e^(-1.995(Li2O Feed Grade %) ) )into a 5.5% Li2O spodumene concentrate. A spodumene concentrate price of US $1,500 was assumed with USD/CAD exchange rate of 0.76. A royalty of 2% was applied.

•  Underground adopted cut-off grade for CV5 is 0.60% Li2O and determined based on the same parameters than the open pit with the addition of the underground mining cost estimated at 62.95$/t considering a long hole transverse mining method.

•  Underground adopted cut-off grade for CV13 is 0.80% Li2O and determined based on the same parameters than the open pit with the addition of the underground mining cost estimated at 100$/t considering a mining method that will be aligned with the shallow dip lenses.

Mining factors or
assumptions

•  Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.

•  Open-pit mining method is assumed with an overall pit slope ranging from 45° to 53° considering various sectors, single and double bench.

•  No dilution or mining recovery has been considered.

•  Underground mining method considered is long hole for CV5. Stope size considered are vertical 30 m in height, 15 m in width and a minimum of 3 m in thickness.

•  The mining method for CV13 has not been determined but the mining cost used is higher considering the shallow dip of the lenses in CV13. Stope dimensions considered are horizontal considering length of 15 m, 7.5 m in width and a minimum height of 3 m.

•  The Mineral Resources are reported as in-situ tonnes and grade.

Metallurgical factors or
assumptions

•  The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.

•  The processing assumptions are based on HLS and magnetic testing, which has produced 6+% Li2O spodumene concentrates at >70% recovery on drill core samples from both the CV5 and CV13 pegmatites and indicate DMS as a viable primary process approach for both CV5 and CV13. This is supported by a subsequent DMS test on CV5 drill core, which returned a spodumene concentrate grading 5.8% Li2O at 79% recovery.

•  For the Mineral Resource conceptual mining shapes, based on a grade versus recovery curve of the test work completed to date, an average recovery of approximately 70% to produce a 5.5% Li2O spodumene concentrate was used

Environmental
factors or
assumptions

•  Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.

•  The Project's CV5 Pegmatite is in the early stages of economic evaluation.

•  A conventional tailings management facility and no material adverse environmental impediments are assumed.

•  No environmental assessment has been completed for the Project. However, a Project Description has been submitted to relevant environmental regulator.

Bulk density

•  Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.

•  The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.

•  Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.

•  Density of the pegmatite was estimated using a linear regression function derived from SG field measurements (1 sample every ~4.5 m) and Li2O grade. The regression function (SG= 0.0688 x Li2O% + 2.625) was used for all pegmatite blocks. Non-pegmatite blocks were assigned a fixed SG based on the field measurement median value (diabase = 2.94, amphibolite group = 2.98, metasediment 2.76, wacke = 2.71, ultramafic = 2.95, overburden = 2.00).

Classification

•  The basis for the classification of the Mineral Resources into varying confidence categories.

•  Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).

•  Whether the result appropriately reflects the Competent Person's view of the deposit.

•  The Shaakichiuwaanaan resource classification is in accordance with the JORC 2012 reporting guidelines. All reported Mineral Resources have reasonable prospects for eventual economic extraction. All reported Mineral Resources have been constrained by conceptual open-pit or underground mineable shapes to demonstrate reasonable prospects for eventual economic extraction ("RPEEE").

•  Blocks were classified as Indicated when 1.) demonstrated geological continuity and minimum thickness of 2 m, 2.) the drill spacing was 70 m or lower and meeting the minimum estimation criteria parameters, and 3.) grade continuity at the reported cut-off grade. Blocks were classified Inferred when drill spacing was between 70 m and 140 m and meeting the minimum estimation criteria parameters. Geological continuity and a minimum thickness of 2 m were also mandatory.  There are no measured classified blocks. Pegmatite dykes or extension with lower level of information / confidence were also not classified.

•  Classification shapes are created around contiguous blocks at the stated criteria with consideration for the selected mining method.

•  The classification of the Mineral Resource Estimate is appropriate and reflects the view of Competent Person (Todd McCracken).

 

Audits or reviews

•  The results of any audits or reviews of Mineral Resource estimates.

•  The mineral resource estimate has been reviewed internally by BBA Engineering Ltd. as part of its regular internal review process.

•  There has been no external audit of the Mineral Resource Estimate.

Discussion of
relative accuracy/
confidence

•  Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.

•  The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.

•  These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.

•  The Competent Person is of the opinion that the Mineral Resource for the CV5 and CV13 spodumene pegmatites (collectively, the Shaakichiuwaanaan Mineral Resource) appropriately consider modifying factors and have been estimated using industry best practices.

•  The accuracy of the estimate within this Mineral Resource is determined by yet not limited to; geological confidence including understanding the geology, deposit geometry, drill spacing.

•  As always, changes in commodity price and exchange rate assumptions will have an impact on the optimal size of the conceptual mining open-pit and underground shapes.

•  Changes in current environmental or legal regulations may affect the operational parameters (cost, mitigation measures).

•  The Mineral Resource Estimate is constrained using open-pit and underground mining shapes to satisfy reasonable prospects for eventual economic extraction.

APPENDIX 2: SOURCES FOR FIGURE 1 (TONNAGE VS GRADE – THE AMERICAS) & FIGURE 2 
(TONNAGE VS GRADE – WORLD)

            Company name

Stock Ticker

Project Name

Source

Liontown Resources Ltd.

LTR

Kathleen Valley

ASX announcement dated April 8, 2021

Liontown Resources Ltd.

LTR

Buldania

ASX announcement dated November 8, 2019

Pilbara Minerals Ltd.

PLS

Pilgangoora

ASX announcement dated August 7, 2023

Alita Resources Ltd.

n/a

Bald Hill

Alliance Minerals Assets Limited March 2019 Presentation

Arcadium Lithium Plc

ALTM

Whabouchi

S-K 1300 Technical Report dated September 8, 2023

Arcadium Lithium Plc

ALTM

Galaxy

ASX announcement dated August 11, 2023

Arcadium Lithium Plc

ALTM

Mt Cattlin

ASX announcement dated November 9, 2023

European Lithium Ltd.

EUR

Wolfsberg

ASX announcement dated December 1, 2021

AVZ Minerals Ltd.

AVZ

Manono

ASX announcement dated January 31, 2024

Critical Elements Lithium Corp.

CRE

Rose

TSX Announcement dated August 29, 2023

Atlantic Lithium Ltd..

ALL

Ewoyaa

ASX announcement dated February 1, 2023

IGO Ltd.

IGO

Greenbushes

ASX announcement dated December 31, 2023

Mineral Resources Ltd.

MIN

Wodgina

ASX announcement dated September 22, 2023

Albemarle Corp.

ALB

Kings Mountain

SEC filing dated February 15, 2023

Mineral Resources Ltd.

MIN

Mt Marion

ASX announcement dated February 21, 2024

Sociedad Quimica y Minera de Chile S.A.

SQM

Mt. Holland

Annual Report 2022

Leo Lithium Ltd.

LLL

Goulamina

ASX announcement dated July 1, 2024

Sayona Mining Ltd.

SYA

Authier

ASX announcement dated April 14, 2023

Sayona Mining Ltd.

SYA

NAL

ASX announcement dated April 14, 2023

Sayona Mining Ltd.

SYA

Moblan

ASX announcement dated April 17, 2023

Prospect Resources Ltd.

PSC

Arcadia

ASX announcement dated October 11, 2021

AMG Critical Materials N.V.

AMG

Mibra

Euronext announcement dated April 3, 2017

Sibanye Stillwater Ltd.

SSW

Keliber

JSE announcement dated February 17, 2023

Lithium Ionic Corp

LTH

Bandeira

Press release dated April 24,2024

Frontier Lithium Inc.

FL

PAK + Spark

NI 43-101 technical report dated February 28, 2023

Sigma Lithium Corp.

SGML

Grota do Cirilo

Press release dated January 31,2024

Piedmont Lithium Inc

PLL

Carolina

Press release dated October 21,2021

Sinomine Resource Group Co., Ltd.

002738

Bikita

SZ Announcement dated April 25, 2023

Delta Lithium Ltd.

DLI

Mt Ida

ASX announcement dated October 3, 2023

Delta Lithium Ltd.

DLI

Yinnetharra

ASX announcement dated December 27, 2023

Avalon Advanced Materials Inc.

AVL

Separation Rapids

PR Newswire press release dated August 10, 2023

Andrada Mining Ltd.

ATM

Uis

AIM announcement dated February 6, 2023

Global Lithium Resources Ltd.

GL1

Manna

ASX announcement dated June 12, 2024

Global Lithium Resources Ltd.

GL1

Marble Bar

ASX announcement dated December 15, 2022

Latin Resources Ltd

LRS

Colina

ASX announcement dated May 30, 2024

Essential Metals Ltd.

ESS

Dome North

ASX announcement dated December 20, 2022

Kodal Minerals Plc

KOD

Bougouni

AIM announcement dated January 27, 2020

Savannah Resources Plc

SAV

Mina Do Barroso

AIM announcement dated June 12, 2023

Green Technology Metals Ltd.

GT1

Root

ASX announcement dated October 17, 2023

Green Technology Metals Ltd.

GT1

Seymour

ASX announcement dated November 17, 2023

Rock Tech Lithium Inc.

RCK

Georgia Lake

TSX Announcement dated November 15, 2022

Winsome Resources Ltd.

WR1

Adina

ASX announcement dated May 28, 2024

Cygnus Metals Ltd.

CY5

Pontax

ASX announcement dated August 14, 2023

Core Lithium Ltd

CXO

Finniss

ASX announcement dated April 11, 2024

APPENDIX 3: MRE DETAILS FOR DEPOSITS/PROJECTS NOTED IN FIGURE 1 & FIGURE 2.

Company Name

Project Name

Region

Stage

Category

Tonnage
(Mt)

Grade
(Li2O)

Liontown Resources Ltd.

Kathleen Valley

APAC

Development

Measured

20.0

1.32 %





Indicated

109.0

1.37 %





Inferred

27.0

1.27 %

Liontown Resources Ltd.

Buldania

APAC

Development

Measured

-

-





Indicated

9.1

0.98 %





Inferred

5.9

0.95 %

Pilbara Minerals Ltd.

Pilgangoora

APAC

Production

Measured

22.1

1.34 %





Indicated

315.2

1.15 %





Inferred

76.6

1.07 %

Alita Resources Ltd.

Bald Hill

APAC

Production

Measured

-

-





Indicated

14.4

1.02 %





Inferred

12.1

0.90 %

Arcadium Lithium Plc

Whabouchi

Americas   

Development

Measured

-

-





Indicated

46.0

1.36 %





Inferred

8.3

1.31 %

Arcadium Lithium Plc

Galaxy

Americas

Development

Measured

-

-





Indicated

54.3

1.30 %





Inferred

55.9

1.29 %

Arcadium Lithium Plc

Mt Cattlin

APAC

Production

Measured

0.2

1.00 %





Indicated

10.6

1.30 %





Inferred

1.3

1.30 %

European Lithium Ltd.

Wolfsberg

EMEA

Development

Measured

4.3

1.13 %





Indicated

5.4

0.95 %





Inferred

3.1

0.90 %

AVZ Minerals Ltd.

Manono

EMEA

Development

Measured

132.0

1.65 %





Indicated

367.0

1.62 %





Inferred

342.0

1.57 %

Critical Elements Lithium Corp.

Rose

Americas

Development

Measured

-

-





Indicated

30.6

0.93 %





Inferred

2.4

0.78 %

Atlantic Lithium Ltd.

Ewoyaa

EMEA

Development

Measured

3.5

1.37 %





Indicated

24.5

1.25 %





Inferred

7.4

1.16 %

Tailson JV

Greenbushes

APAC

Production

Measured

0.7

3.00 %





Indicated

397.0

1.50 %





Inferred

49.0

1.10 %

MARBL JV

Wodgina

APAC

Production

Measured

-

-





Indicated

182.1

1.15 %





Inferred

35.3

1.19 %

Albemarle Corp.

Kings Mountain

Americas

Development

Measured

-

0.00 %





Indicated

46.8

1.37 %





Inferred

42.9

1.10 %

MinRes / Ganfeng

Mt Marion

APAC

Production

Measured

-

-





Indicated

54.7

1.40 %





Inferred

11.4

1.05 %

SQM / Wesfarmers

Mt. Holland

APAC

Development

Measured

71.0

1.57 %





Indicated

107.0

1.51 %





Inferred

8.0

1.44 %

Ganfeng

Goulamina

EMEA

Development

Measured

13.1

1.58 %





Indicated

94.9

1.42 %





Inferred

159.2

1.33 %

Sayona Mining Ltd.

Authier

Americas

Development

Measured

6.0

0.98 %





Indicated

8.1

1.03 %





Inferred

2.9

1.00 %

Sayona Mining Ltd.

NAL

Americas

Production

Measured

1.0

1.19 %





Indicated

24.0

1.23 %





Inferred

33.0

1.23 %

Sayona Mining Ltd.

Moblan

Americas

Development

Measured

6.3

1.46 %





Indicated

43.6

1.16 %





Inferred

21.0

1.02 %

Prospect Resources Ltd.

Arcadia

EMEA

Development

Measured

15.8

1.12 %





Indicated

45.6

1.06 %





Inferred

11.2

0.99 %

AMG Critical Materials N.V.

Mibra

Americas

Production

Measured

3.4

1.00 %





Indicated

16.9

1.07 %





Inferred

4.2

1.03 %

Sibanye Stillwater Ltd.

Keliber

EMEA

Development

Measured

10.2

0.96 %





Indicated

3.9

1.06 %





Inferred

3.3

0.83 %

Frontier Lithium Inc.

PAK + Spark

Americas

Development

Measured

1.3

2.14 %





Indicated

24.7

1.59 %





Inferred

32.5

1.41 %

Sigma Lithium Corp.

Grota do Cirilo

Americas

Production

Measured

45.2

1.41 %





Indicated

49.1

1.39 %





Inferred

14.6

1.37 %

Piedmont Lithium Inc

Carolina

Americas

Development

Measured

-

-





Indicated

28.2

1.11 %





Inferred

15.9

1.02 %

Sinomine Resource Group Co., Ltd.

Bikita

EMEA

Production

Measured

21.7

1.17 %





Indicated

12.5

1.09 %





Inferred

6.1

1.08 %

Delta Lithium Ltd.

Mt Ida

APAC

Development

Measured

-

-





Indicated

7.8

1.30 %





Inferred

6.8

1.10 %

Avalon Advanced Materials Inc.

Separation Rapids

Americas

Development

Measured

4.3

1.33 %





Indicated

5.8

1.36 %





Inferred

2.8

1.38 %

Andrada Mining Ltd.

Uis

EMEA

Development

Measured

21.0

0.72 %





Indicated

17.0

0.73 %





Inferred

43.0

0.73 %

Global Lithium Resources Ltd.

Manna

APAC

Development

Measured

-

-





Indicated

32.9

1.04 %





Inferred

18.7

0.92 %

Global Lithium Resources Ltd.

Marble Bar

APAC

Development

Measured

-

-





Indicated

3.8

0.97 %





Inferred

14.2

1.01 %

Latin Resources Ltd

Colina

Americas

Development

Measured

28.6

1.31 %





Indicated

38.6

1.23 %





Inferred

3.6

1.10 %

Essential Metals Ltd.

Dome North

EMEA

Development

Measured

-

-





Indicated

8.6

1.23 %





Inferred

2.6

0.92 %

Kodal Minerals Plc

Bougouni

EMEA

Development

Measured

-

-





Indicated

11.6

1.13 %





Inferred

20.3

1.02 %

Savannah Resources Plc

Mina Do Barroso

EMEA

Development

Measured

6.6

1.10 %





Indicated

11.8

1.00 %





Inferred

9.6

1.10 %

Rock Tech Lithium Inc.

Georgia Lake

Americas

Development

Measured

-

-





Indicated

10.6

0.88 %





Inferred

4.2

1.00 %

Core Lithium Ltd

Finniss

APAC

Care & Maintenance

Measured

6.3

1.41 %





Indicated

21.6

1.30 %





Inferred

20.3

1.18 %

Lithium Ionic Corp.

Bandeira

Americas

Development

Measured

3.3

1.38 %





Indicated

20.4

1.33 %





Inferred

18.3

1.37 %

Delta Lithium Ltd.

Yinnetharra

APAC

Development

Measured

-

-





Indicated

6.7

1.00 %





Inferred

19.0

1.00 %

Green Technology Metals Ltd.

Root

Americas

Development

Measured

-

-





Indicated

9.4

1.30 %





Inferred

5.2

1.03 %

Green Technology Metals Ltd.

Seymour

Americas

Development

Measured

-

-





Indicated

6.1

1.25 %





Inferred

4.1

0.70 %

Winsome Resources Ltd.

Adina

Americas

Development

Measured

-

-





Indicated

61.4

1.14 %





Inferred

16.5

1.19 %

Cygnus Metals Ltd.

Pontax

Americas

Development

Measured

-

-





Indicated

-

-





Inferred

10.1

1.04 %

Patriot Battery Metals Inc.

Shaakichiuwaanaan

Americas

Development

Measured

-

-





Indicated

80.1

1.44 %





Inferred

62.5

1.31 %

1.  APAC = Asia-Pacific; EMEA = Europe, Middle East, and Africa; Americas = North America, and South America

ABOUT PATRIOT BATTERY METALS INC.

Patriot Battery Metals Inc. is a hard-rock lithium exploration company focused on advancing its district-scale 100%-owned Shaakichiuwaanaan Property (formerly known as Corvette) located in the Eeyou Istchee James Bay region of Quebec, Canada, which is accessible year-round by all-season road and is proximal to regional powerline infrastructure. The Shaakichiuwaanaan Mineral Resource1, which includes the CV5 & CV13 spodumene pegmatites, totals 80.1 Mt at 1.44% Li2O Indicated, and 62.5 Mt at 1.31% Li2O Inferred, and ranks as the largest lithium pegmatite resource in the Americas, and the 8th largest lithium pegmatite resource in the world. Additionally, the Shaakichiuwaanaan Property hosts multiple other spodumene pegmatite clusters that remain to be drill tested, as well as significant areas of prospective trend that remain to be assessed.

1 Shaakichiuwaanaan (CV5 & CV13) Mineral Resource Estimate (80.1 Mt at 1.44% Li2O and 163 ppm Ta2O5 Indicated, and 62.5 Mt at 1.31% Li2O and 147 ppm Ta2O5 ppm Inferred) is reported at a cut-off grade of 0.40% Li2O (open-pit), 0.60% Li2O (underground CV5), and 0.80% Li2O (underground CV13) with an Effective Date of June 27, 2024 (through drill hole CV24-526). Mineral resources are not mineral reserves as they do not have demonstrated economic viability.

For further information, please contact us at info@patriotbatterymetals.com or by calling +1 (604) 279-8709, or visit www.patriotbatterymetals.com. Please also refer to the Company's continuous disclosure filings, available under its profile at www.sedarplus.ca and www.asx.com.au, for available exploration data.

This news release has been approved by the Board of Directors.

"KEN BRINSDEN"                                           

Kenneth Brinsden, President, CEO, & Managing Director

DISCLAIMER FOR FORWARD-LOOKING INFORMATION

This news release contains "forward-looking information" or "forward-looking statements" within the meaning of applicable securities laws and other statements that are not historical facts. Forward-looking statements are included to provide information about management's current expectations and plans that allows investors and others to have a better understanding of the Company's business plans and financial performance and condition.

All statements, other than statements of historical fact included in this news release, regarding the Company's strategy, future operations, technical assessments, prospects, plans and objectives of management are forward-looking statements that involve risks and uncertainties. Forward-looking statements are typically identified by words such as "plan", "expect", "estimate", "intend", "anticipate", "believe", or variations of such words and phrases or statements that certain actions, events or results "may", "could", "would", "might" or "will" be taken, occur or be achieved. Forward-looking statements in this release include, but are not limited to, statements concerning: the timing of the preliminary economic assessment, the timing of a feasibility study, the potential for production, the cost of production and the potential benefits thereof, the significant potential for further resource growth at the Property through continued drill exploration, notably of the potential for connectivity of the pegmatite body of the CV5 and CV13 spodumene pegmatites, the Company's position as a leading candidate to provide long-term spodumene supply to the North American and European markets, the recoverability of tantalum as a by-product, and the potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present near CV5 and CV13 spodumene pegmatites.

Forward-looking information is based upon certain assumptions and other important factors that, if untrue, could cause the actual results, performance or achievements of the Company to be materially different from future results, performance or achievements expressed or implied by such information or statements. There can be no assurance that such information or statements will prove to be accurate. Key assumptions upon which the Company's forward-looking information is based include, without limitation, that proposed exploration and Mineral Resource Estimate work on the Property will continue as expected, the accuracy of reserve and resource estimates, the classification of resources between inferred and the assumptions on which the reserve and resource estimates are based, long-term demand for spodumene supply, and that exploration and development results continue to support management's current plans for Property development.

Readers are cautioned that the foregoing list is not exhaustive of all factors and assumptions which may have been used. Forward-looking statements are also subject to risks and uncertainties facing the Company's business, any of which could have a material adverse effect on the Company's business, financial condition, results of operations and growth prospects. Some of the risks the Company faces and the uncertainties that could cause actual results to differ materially from those expressed in the forward-looking statements include, among others, the ability to execute on plans relating to the Company's Project, including the timing thereof. In addition, readers are directed to carefully review the detailed risk discussion in the Company's most recent Annual Information Form filed on SEDAR+, which discussion is incorporated by reference in this news release, for a fuller understanding of the risks and uncertainties that affect the Company's business and operations.

Although the Company believes its expectations are based upon reasonable assumptions and has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking statements, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that forward-looking information will prove to be accurate, as actual results and future events could differ materially from those anticipated in such information. As such, these risks are not exhaustive; however, they should be considered carefully. If any of these risks or uncertainties materialize, actual results may vary materially from those anticipated in the forward-looking statements found herein. Due to the risks, uncertainties and assumptions inherent in forward-looking statements, readers should not place undue reliance on forward-looking statements.

Forward-looking statements contained herein are presented for the purpose of assisting investors in understanding the Company's business plans, financial performance and condition and may not be appropriate for other purposes.

The forward-looking statements contained herein are made only as of the date hereof. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise, except to the extent required by applicable law. The Company qualifies all of its forward-looking statements by these cautionary statements.

Patriot Battery Metals logo (CNW Group/Patriot Battery Metals Inc.)

Cision View original content to download multimedia:https://www.prnewswire.com/news-releases/significant-mineral-resource-upgrade-at-shaakichiuwaanaan-lithium-project-to-underpin-impending-pea-302214902.html

SOURCE Patriot Battery Metals Inc.

Copyright 2024 PR Newswire

1 Year Patriot Battery Metals Chart

1 Year Patriot Battery Metals Chart

1 Month Patriot Battery Metals Chart

1 Month Patriot Battery Metals Chart

Your Recent History

Delayed Upgrade Clock